Indices of Maximal Subgroups of Finite Soluble Groups
Algebra i logika, Tome 43 (2004) no. 4, pp. 411-424

Voir la notice de l'article provenant de la source Math-Net.Ru

We look at the structure of a soluble group $G$ depending on the value of a function $m(G)=\max\limits_{p\in\pi(G)}$, where $m_p(G)=\max\{\log_p|G:M|\mid M$, $p\in \pi (G)$. \medskip Theorem 1. {\it States that for a soluble group $G$, (1) $r(G/\Phi (G))=m(G)$; (2) $d(G/\Phi (G))\leqslant1+\rho(m(G))\leqslant3+m(G)$; (3) $l_p(G)\leqslant1+t$, where $2^{t-1}$.} \medskip Here, $\Phi(G)$ is the Frattini subgroup of $G$, and $r(G)$, $d(G)$, and $l_p(G)$ are, respectively, the principal rank, the derived length, and the $p$-length of $G$. The maximum of derived lengths of completely reducible soluble subgroups of a general linear group $GL(n,F)$ of degree $n$, where $F$ is a field, is denoted by $\rho(n)$. The function $m(G)$ allows us to establish the existence of a new class of conjugate subgroups in soluble groups. Namely, \medskip Theorem 2. {\it Maintains that for any natural $k$, every soluble group $G$ contains a subgroup $K$ possessing the following properties: (1) $m(K)\leqslant k$; (2) if $T$ and $H$ are subgroups of $G$ such that $K\leqslant T$ then $|H:T|=p^t$ for some prime $p$ and for $t>k$. Moreover, every two subgroups of $G$ enjoying (1) and (2) are mutually conjugate.}
Keywords: finite soluble group, maximal subgroup.
@article{AL_2004_43_4_a1,
     author = {V. S. Monakhov},
     title = {Indices of {Maximal} {Subgroups} of {Finite} {Soluble} {Groups}},
     journal = {Algebra i logika},
     pages = {411--424},
     publisher = {mathdoc},
     volume = {43},
     number = {4},
     year = {2004},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/AL_2004_43_4_a1/}
}
TY  - JOUR
AU  - V. S. Monakhov
TI  - Indices of Maximal Subgroups of Finite Soluble Groups
JO  - Algebra i logika
PY  - 2004
SP  - 411
EP  - 424
VL  - 43
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AL_2004_43_4_a1/
LA  - ru
ID  - AL_2004_43_4_a1
ER  - 
%0 Journal Article
%A V. S. Monakhov
%T Indices of Maximal Subgroups of Finite Soluble Groups
%J Algebra i logika
%D 2004
%P 411-424
%V 43
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AL_2004_43_4_a1/
%G ru
%F AL_2004_43_4_a1
V. S. Monakhov. Indices of Maximal Subgroups of Finite Soluble Groups. Algebra i logika, Tome 43 (2004) no. 4, pp. 411-424. http://geodesic.mathdoc.fr/item/AL_2004_43_4_a1/