Indices of Maximal Subgroups of Finite Soluble Groups
Algebra i logika, Tome 43 (2004) no. 4, pp. 411-424.

Voir la notice de l'article provenant de la source Math-Net.Ru

We look at the structure of a soluble group $G$ depending on the value of a function $m(G)=\max\limits_{p\in\pi(G)}$, where $m_p(G)=\max\{\log_p|G:M|\mid M$, $p\in \pi (G)$. \medskip Theorem 1. {\it States that for a soluble group $G$, (1) $r(G/\Phi (G))=m(G)$; (2) $d(G/\Phi (G))\leqslant1+\rho(m(G))\leqslant3+m(G)$; (3) $l_p(G)\leqslant1+t$, where $2^{t-1}$.} \medskip Here, $\Phi(G)$ is the Frattini subgroup of $G$, and $r(G)$, $d(G)$, and $l_p(G)$ are, respectively, the principal rank, the derived length, and the $p$-length of $G$. The maximum of derived lengths of completely reducible soluble subgroups of a general linear group $GL(n,F)$ of degree $n$, where $F$ is a field, is denoted by $\rho(n)$. The function $m(G)$ allows us to establish the existence of a new class of conjugate subgroups in soluble groups. Namely, \medskip Theorem 2. {\it Maintains that for any natural $k$, every soluble group $G$ contains a subgroup $K$ possessing the following properties: (1) $m(K)\leqslant k$; (2) if $T$ and $H$ are subgroups of $G$ such that $K\leqslant T$ then $|H:T|=p^t$ for some prime $p$ and for $t>k$. Moreover, every two subgroups of $G$ enjoying (1) and (2) are mutually conjugate.}
Keywords: finite soluble group, maximal subgroup.
@article{AL_2004_43_4_a1,
     author = {V. S. Monakhov},
     title = {Indices of {Maximal} {Subgroups} of {Finite} {Soluble} {Groups}},
     journal = {Algebra i logika},
     pages = {411--424},
     publisher = {mathdoc},
     volume = {43},
     number = {4},
     year = {2004},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/AL_2004_43_4_a1/}
}
TY  - JOUR
AU  - V. S. Monakhov
TI  - Indices of Maximal Subgroups of Finite Soluble Groups
JO  - Algebra i logika
PY  - 2004
SP  - 411
EP  - 424
VL  - 43
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AL_2004_43_4_a1/
LA  - ru
ID  - AL_2004_43_4_a1
ER  - 
%0 Journal Article
%A V. S. Monakhov
%T Indices of Maximal Subgroups of Finite Soluble Groups
%J Algebra i logika
%D 2004
%P 411-424
%V 43
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AL_2004_43_4_a1/
%G ru
%F AL_2004_43_4_a1
V. S. Monakhov. Indices of Maximal Subgroups of Finite Soluble Groups. Algebra i logika, Tome 43 (2004) no. 4, pp. 411-424. http://geodesic.mathdoc.fr/item/AL_2004_43_4_a1/

[1] B. Huppert, “Normalteiler und maximale Untergruppen endlicher Gruppen”, Math. Z., 60:4 (1954), 409–434 | DOI | MR | Zbl

[2] B. Huppert, Endliche Gruppen I, Springer-Verlag, Berlin a.o., 1967 | MR | Zbl

[3] R. Guralnick, “Subgroups of prime power index in a simple group”, J. Algebra, 81:2 (1983), 304–311 | DOI | MR | Zbl

[4] V. S. Monakhov, E. E. Gribovskaya, “O maksimalnykh i silovskikh podgruppakh konechnykh razreshimykh grupp”, Matem. zametki, 70:4 (2001), 603–612 | MR | Zbl

[5] V. S. Monakhov, M. V. Selkin, E. E. Gribovskaya, “O razreshimykh normalnykh podgruppakh konechnykh grupp”, Ukr. matem. zh., 54:7 (2002), 940–950 | MR

[6] H. Zassenhaus, “Beweis eines Zatzes uber diskrete Gruppen”, Abh. Math. Sem. Univ. Hamburg, 12 (1938), 289–312 | DOI | Zbl

[7] J. D. Dixon, “The solvable length of a solvable linear groups”, Math. Z., 107:2 (1968), 151–158 | DOI | MR

[8] W. Gaschutz, Lectures of subgroups of Sylow type in finite soluble groups, Notes Pure Math., 11, Aust. Natl. Univ., Canberra, 1979 | MR

[9] G. Pazderski, “Uber lineare auflosbare Gruppen”, Math. Nachr., 45 (1970), 1–68 | DOI | MR | Zbl

[10] L. A. Shemetkov, “O konechnykh razreshimykh gruppakh”, Izvestiya AN SSSR, ser. matem., 32:3 (1968), 533–559 | Zbl

[11] J. D. Dixon, The structure of linear groups, Van Nostrand Reinhold Co., London a.o., 1971

[12] V. D. Mazurov, “O $p$-dline razreshimykh grupp”, VI Vsesoyuznyi simpozium po teorii grupp, Kiev, 1980, 50–60 | MR | Zbl

[13] L. A. Shemetkov, Formatsii konechnykh grupp, Nauka, Moskva, 1978 | MR | Zbl

[14] M. F. Newman, “The solvable length of a solvable linear groups”, Math. Z., 126 (1972), 59–70 | DOI | MR | Zbl

[15] Y. Berkovich, “Solvable permutation groups of maximal derived length”, Algebra Colloq., 4:2 (1997), 175–186 | MR | Zbl

[16] P. P. Palfy, “Bounds for linear groups of odd order”, Rend. Circ. Mat. Palermo, II. Ser, 39:23 (1990), 253–263 | MR

[17] M. V. Selkin, Maksimalnye podgruppy v teorii klassov konechnykh grupp, Belaruskaya navuka, Minsk, 1997 | MR