$\Sigma$-Subsets of Natural Numbers
Algebra i logika, Tome 43 (2004) no. 3, pp. 291-320.

Voir la notice de l'article provenant de la source Math-Net.Ru

It is shown that the class of all possible families of $\Sigma$-subsets of finite ordinals in admissible sets coincides with a class of all non-empty families closed under $e$-reducibility and $\oplus$. The construction presented has the property of being minimal under effective definability. Also, we describe the smallest (w.r.t. inclusion) classes of families of subsets of natural numbers, computable in hereditarily finite superstructures. A new series of examples is constructed in which admissible sets lack in universal $\Sigma$-function. Furthermore, we show that some principles of classical computability theory (such as the existence of an infinite non-trivial enumerable subset, existence of an infinite computable subset, reduction principle, uniformization principle) are always satisfied for the classes of all $\Sigma$-subsets of finite ordinals in admissible sets
Mots-clés : admissible set
Keywords: $\Sigma$-subset, finite ordinal, hereditarily finite superstructure, universal $\Sigma$-function.
@article{AL_2004_43_3_a1,
     author = {A. S. Morozov and V. G. Puzarenko},
     title = {$\Sigma${-Subsets} of {Natural} {Numbers}},
     journal = {Algebra i logika},
     pages = {291--320},
     publisher = {mathdoc},
     volume = {43},
     number = {3},
     year = {2004},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/AL_2004_43_3_a1/}
}
TY  - JOUR
AU  - A. S. Morozov
AU  - V. G. Puzarenko
TI  - $\Sigma$-Subsets of Natural Numbers
JO  - Algebra i logika
PY  - 2004
SP  - 291
EP  - 320
VL  - 43
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AL_2004_43_3_a1/
LA  - ru
ID  - AL_2004_43_3_a1
ER  - 
%0 Journal Article
%A A. S. Morozov
%A V. G. Puzarenko
%T $\Sigma$-Subsets of Natural Numbers
%J Algebra i logika
%D 2004
%P 291-320
%V 43
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AL_2004_43_3_a1/
%G ru
%F AL_2004_43_3_a1
A. S. Morozov; V. G. Puzarenko. $\Sigma$-Subsets of Natural Numbers. Algebra i logika, Tome 43 (2004) no. 3, pp. 291-320. http://geodesic.mathdoc.fr/item/AL_2004_43_3_a1/

[1] J. Barwise, Admissible sets and structures, Springer-Verlag, Berlin a.o., 1975 | MR | Zbl

[2] Yu. L. Ershov, Opredelimost i vychislimost, Sib. shkola algebry i logiki, Nauchnaya kniga (NII MIOO NGU), Novosibirsk, 1996 | MR | Zbl

[3] H. Rogers, Theory of recursive functions and effective computability, McGraw-Hill Ser. High Math., McGraw-Hill, New York a.o., 1967 | MR | Zbl

[4] V. A. Rudnev, “O suschestvovanii neotdelimoi pary v rekursivnoi teorii dopustimykh mnozhestv”, Algebra i logika, 27:1 (1988), 48–56 | MR

[5] V. G. Puzarenko, “O vychislimosti nad modelyami razreshimykh teorii”, Algebra i logika, 39:2 (2000), 170–197 | MR | Zbl

[6] A. S. Morozov, “$\Sigma$-mnozhestvo naturalnykh chisel, ne perechislimoe s pomoschyu naturalnykh chisel”, Sib. matem. zh., 41:6 (2000), 1404–1408 | MR | Zbl

[7] V. A. Gorbunov, Algebraicheskaya teoriya kvazimnogoobrazii, Sib. shkola algebry i logiki, Nauchnaya kniga (IDMI), Novosibirsk, 1999 | Zbl

[8] G. Keisler, Ch. Ch. Chen, Teoriya modelei, Mir, Moskva, 1977 | MR

[9] V. A. Rudnev, “Ob universalnoi rekursivnoi funktsii na dopustimykh mnozhestvakh”, Algebra i logika, 25:4 (1986), 425–435 | MR | Zbl

[10] R. Soare, Recursively enumerable sets and degrees, Springer-Verlag, Berlin a.o., 1987 | MR