Voir la notice de l'article provenant de la source Math-Net.Ru
@article{AL_2004_43_3_a1, author = {A. S. Morozov and V. G. Puzarenko}, title = {$\Sigma${-Subsets} of {Natural} {Numbers}}, journal = {Algebra i logika}, pages = {291--320}, publisher = {mathdoc}, volume = {43}, number = {3}, year = {2004}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/AL_2004_43_3_a1/} }
A. S. Morozov; V. G. Puzarenko. $\Sigma$-Subsets of Natural Numbers. Algebra i logika, Tome 43 (2004) no. 3, pp. 291-320. http://geodesic.mathdoc.fr/item/AL_2004_43_3_a1/
[1] J. Barwise, Admissible sets and structures, Springer-Verlag, Berlin a.o., 1975 | MR | Zbl
[2] Yu. L. Ershov, Opredelimost i vychislimost, Sib. shkola algebry i logiki, Nauchnaya kniga (NII MIOO NGU), Novosibirsk, 1996 | MR | Zbl
[3] H. Rogers, Theory of recursive functions and effective computability, McGraw-Hill Ser. High Math., McGraw-Hill, New York a.o., 1967 | MR | Zbl
[4] V. A. Rudnev, “O suschestvovanii neotdelimoi pary v rekursivnoi teorii dopustimykh mnozhestv”, Algebra i logika, 27:1 (1988), 48–56 | MR
[5] V. G. Puzarenko, “O vychislimosti nad modelyami razreshimykh teorii”, Algebra i logika, 39:2 (2000), 170–197 | MR | Zbl
[6] A. S. Morozov, “$\Sigma$-mnozhestvo naturalnykh chisel, ne perechislimoe s pomoschyu naturalnykh chisel”, Sib. matem. zh., 41:6 (2000), 1404–1408 | MR | Zbl
[7] V. A. Gorbunov, Algebraicheskaya teoriya kvazimnogoobrazii, Sib. shkola algebry i logiki, Nauchnaya kniga (IDMI), Novosibirsk, 1999 | Zbl
[8] G. Keisler, Ch. Ch. Chen, Teoriya modelei, Mir, Moskva, 1977 | MR
[9] V. A. Rudnev, “Ob universalnoi rekursivnoi funktsii na dopustimykh mnozhestvakh”, Algebra i logika, 25:4 (1986), 425–435 | MR | Zbl
[10] R. Soare, Recursively enumerable sets and degrees, Springer-Verlag, Berlin a.o., 1987 | MR