Sublattices of Lattices of Convex Subsets of Vector Spaces
Algebra i logika, Tome 43 (2004) no. 3, pp. 261-290

Voir la notice de l'article provenant de la source Math-Net.Ru

Let ${\mathbf{Co}}(V)$ be a lattice of convex subsets of a vector space $V$ over a totally ordered division ring ${\mathbb{F}}$. We state that every lattice $L$ can be embedded into ${\mathbf{Co}}(V)$, for some space $V$ over ${\mathbb{F}}$. Furthermore, if $L$ is finite lower bounded, then $V$ can be taken finite-dimensional; in this case $L$ also embeds into a finite lower bounded lattice of the form ${\mathbf{Co}}(V,\Omega)=\{X\cap\Omega \mid X\in {\mathbf{Co}}(V)\}$, for some finite subset $\Omega$ of $V$. This result yields, in particular, a new universal class of finite lower bounded lattices.
Keywords: lattice of convex subsets of a vector space, finite lower bounded lattice.
@article{AL_2004_43_3_a0,
     author = {F. Wehrung and M. V. Semenova},
     title = {Sublattices of {Lattices} of {Convex} {Subsets} of {Vector} {Spaces}},
     journal = {Algebra i logika},
     pages = {261--290},
     publisher = {mathdoc},
     volume = {43},
     number = {3},
     year = {2004},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/AL_2004_43_3_a0/}
}
TY  - JOUR
AU  - F. Wehrung
AU  - M. V. Semenova
TI  - Sublattices of Lattices of Convex Subsets of Vector Spaces
JO  - Algebra i logika
PY  - 2004
SP  - 261
EP  - 290
VL  - 43
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AL_2004_43_3_a0/
LA  - ru
ID  - AL_2004_43_3_a0
ER  - 
%0 Journal Article
%A F. Wehrung
%A M. V. Semenova
%T Sublattices of Lattices of Convex Subsets of Vector Spaces
%J Algebra i logika
%D 2004
%P 261-290
%V 43
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AL_2004_43_3_a0/
%G ru
%F AL_2004_43_3_a0
F. Wehrung; M. V. Semenova. Sublattices of Lattices of Convex Subsets of Vector Spaces. Algebra i logika, Tome 43 (2004) no. 3, pp. 261-290. http://geodesic.mathdoc.fr/item/AL_2004_43_3_a0/