Sublattices of Lattices of Convex Subsets of Vector Spaces
Algebra i logika, Tome 43 (2004) no. 3, pp. 261-290.

Voir la notice de l'article provenant de la source Math-Net.Ru

Let ${\mathbf{Co}}(V)$ be a lattice of convex subsets of a vector space $V$ over a totally ordered division ring ${\mathbb{F}}$. We state that every lattice $L$ can be embedded into ${\mathbf{Co}}(V)$, for some space $V$ over ${\mathbb{F}}$. Furthermore, if $L$ is finite lower bounded, then $V$ can be taken finite-dimensional; in this case $L$ also embeds into a finite lower bounded lattice of the form ${\mathbf{Co}}(V,\Omega)=\{X\cap\Omega \mid X\in {\mathbf{Co}}(V)\}$, for some finite subset $\Omega$ of $V$. This result yields, in particular, a new universal class of finite lower bounded lattices.
Keywords: lattice of convex subsets of a vector space, finite lower bounded lattice.
@article{AL_2004_43_3_a0,
     author = {F. Wehrung and M. V. Semenova},
     title = {Sublattices of {Lattices} of {Convex} {Subsets} of {Vector} {Spaces}},
     journal = {Algebra i logika},
     pages = {261--290},
     publisher = {mathdoc},
     volume = {43},
     number = {3},
     year = {2004},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/AL_2004_43_3_a0/}
}
TY  - JOUR
AU  - F. Wehrung
AU  - M. V. Semenova
TI  - Sublattices of Lattices of Convex Subsets of Vector Spaces
JO  - Algebra i logika
PY  - 2004
SP  - 261
EP  - 290
VL  - 43
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AL_2004_43_3_a0/
LA  - ru
ID  - AL_2004_43_3_a0
ER  - 
%0 Journal Article
%A F. Wehrung
%A M. V. Semenova
%T Sublattices of Lattices of Convex Subsets of Vector Spaces
%J Algebra i logika
%D 2004
%P 261-290
%V 43
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AL_2004_43_3_a0/
%G ru
%F AL_2004_43_3_a0
F. Wehrung; M. V. Semenova. Sublattices of Lattices of Convex Subsets of Vector Spaces. Algebra i logika, Tome 43 (2004) no. 3, pp. 261-290. http://geodesic.mathdoc.fr/item/AL_2004_43_3_a0/

[1] Ph. M. Whitman, “Lattices, equivalence relations, and subgroups”, Bull. Am. Math. Soc., 52:6 (1946), 507–522 | DOI | MR | Zbl

[2] P. Pudlák, J. Tůma, “Every finite lattice can be embedded in a finite partition lattice”, Algebra Univers., 10:1 (1980), 74–95 | DOI | MR | Zbl

[3] K. V. Adaricheva, V. A. Gorbunov, V. I. Tumanov, “Join-semidistributive lattices and convex geometries”, Adv. Math., 173:1 (2003), 1–49 | DOI | MR | Zbl

[4] K. V. Adaricheva, “Two embedding theorems for lower bounded lattices”, Algebra Univers., 36:4 (1996), 425–430 | DOI | MR | Zbl

[5] V. B. Repnitskii, “On finite lattices which are embeddable in subsemigroup lattices”, Semigroup Forum, 46:3 (1993), 388–397 | DOI | MR

[6] B. Ŝivak, “Representation of finite lattices by orders on finite sets”, Math. Slovaca, 28:2 (1978), 203–215 | MR

[7] M. V. Semenova, “Reshetki podporyadkov”, Sib. matem. zh., 40:3 (1999), 673–682 | MR | Zbl

[8] R. Freese, J. Ježek, J. B. Nation, Free lattices, Math. Surv. Monogr., 42, Am. Math. Soc., Providence, RI, 1995 | MR | Zbl

[9] K. V. Adaricheva, F. Wehrung, “Embedding finite lattices into finite biatomic lattices”, Order, 20:1 (2003), 31–48 | DOI | MR | Zbl

[10] M. Semenova, F. Wehrung, “Sublattices of lattices of order-convex sets, I. The main representation theorem”, J. Algebra (to appear) | MR

[11] A. Huhn, “On non-modular $n$-distributive lattices I. Lattices of convex sets”, Acta Sci. Math., 52:1/2 (1988), 35–45 | MR | Zbl

[12] G. M. Bergman, On lattices of convex sets in $R_n$, 2003

[13] M. K. Bennett, “Lattices of convex sets”, Trans. Am. Math. Soc., 234:1 (1977), 279–288 | DOI | MR | Zbl

[14] K. Kuratovskii, A. Mostovskii, Teoriya mnozhestv, Mir, M., 1970 | MR

[15] G. Birkho., M. K. Bennett, “The convexity lattice of a poset”, Order, 2 (1985), 223–242 | MR | Zbl

[16] K. V. Adaricheva, “Join-semidistributive lattices of relatively convex sets”, Contributions to General Algebra 14, Proc. of the Olomouc Conf. 2002 (AAA64) and the Potsdam Conf. 2003 (AAA65), Verlag Johannes Heyn, Klagenfurt, 2004, 1–14 | MR | Zbl

[17] M. Semenova, F. Wehrung, “Sublattices of lattices of order-convex sets, III. The case of totally ordered sets”, Internat. J. Algebra Comput. (to appear) | MR

[18] B. Grünbaum, Convex polytopes, Interscience Publ., London a. o., 1967 | MR | Zbl