An Analog for the Frattini Factorization of Finite Groups
Algebra i logika, Tome 43 (2004) no. 2, pp. 184-196.

Voir la notice de l'article provenant de la source Math-Net.Ru

Using the classification of finite simple groups, we prove that if $H$ is an insoluble normal subgroup of a finite group $G$, then $H$ contains a maximal soluble subgroup $G$ such that $G=HN_G(S)$. Thereby Problem 14.62 in the “Kourovka Notebook” is given a positive solution. As a consequence, it is proved that in every finite group, there exists a subgroup that is simultaneously a ${\mathfrak S}$-projector and a ${\mathfrak S}$-injector in the class, ${\mathfrak S}$ , of all soluble groups.
@article{AL_2004_43_2_a3,
     author = {V. I. Zenkov and V. S. Monakhov and D. O. Revin},
     title = {An {Analog} for the {Frattini} {Factorization} of {Finite} {Groups}},
     journal = {Algebra i logika},
     pages = {184--196},
     publisher = {mathdoc},
     volume = {43},
     number = {2},
     year = {2004},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/AL_2004_43_2_a3/}
}
TY  - JOUR
AU  - V. I. Zenkov
AU  - V. S. Monakhov
AU  - D. O. Revin
TI  - An Analog for the Frattini Factorization of Finite Groups
JO  - Algebra i logika
PY  - 2004
SP  - 184
EP  - 196
VL  - 43
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AL_2004_43_2_a3/
LA  - ru
ID  - AL_2004_43_2_a3
ER  - 
%0 Journal Article
%A V. I. Zenkov
%A V. S. Monakhov
%A D. O. Revin
%T An Analog for the Frattini Factorization of Finite Groups
%J Algebra i logika
%D 2004
%P 184-196
%V 43
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AL_2004_43_2_a3/
%G ru
%F AL_2004_43_2_a3
V. I. Zenkov; V. S. Monakhov; D. O. Revin. An Analog for the Frattini Factorization of Finite Groups. Algebra i logika, Tome 43 (2004) no. 2, pp. 184-196. http://geodesic.mathdoc.fr/item/AL_2004_43_2_a3/

[1] D. Gorenstein, Konechnye prostye gruppy. Vvedenie v ikh klassifikatsiyu, Mir, M., 1985 | MR | Zbl

[2] Nereshennye voprosy teorii grupp. Kourovskaya tetrad, 15-e izd., In-t matem. SO RAN, Novosibirsk, 2002 | MR

[3] R. W. Carter, Simple groups of Lie type, Pure Appl. Math., 28, Wiley, London, 1972 | MR

[4] A. S. Kondratev, “Podgruppy konechnykh grupp Shevalle”, Uspekhi matem. n., 41:1 (1986), 57–96 | MR

[5] J. H. Conway, R. T. Curtis, S. P. Norton, R. A. Parker, R. A. Wilson, Atlas of finite groups, Clarendon Press, Oxford, 1985 | MR | Zbl

[6] K. Doerk, T. Hawkes, Finite soluble groups, de Gruyter Expo. Math., 4, Walter de Gruyter, Berlin, New York, 1992 | MR

[7] A. Mann, “Soluble subgroups of symmetric and linear groups”, Isr. J. Math., 55:2 (1986), 162–172 | DOI | MR | Zbl