Voir la notice de l'article provenant de la source Math-Net.Ru
@article{AL_2004_43_1_a3, author = {V. L. Selivanov}, title = {Boolean {Hierarchies} of {Partitions} over {a~Reducible} {Base}}, journal = {Algebra i logika}, pages = {77--109}, publisher = {mathdoc}, volume = {43}, number = {1}, year = {2004}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/AL_2004_43_1_a3/} }
V. L. Selivanov. Boolean Hierarchies of Partitions over a~Reducible Base. Algebra i logika, Tome 43 (2004) no. 1, pp. 77-109. http://geodesic.mathdoc.fr/item/AL_2004_43_1_a3/
[1] S. Kosub, K. Wagner, The boolean hierarchy of partitions, Technical Report 233, Institut für Informatik, Univ. Würzburg, 1999
[2] S. Kosub, K. Wagner, “The boolean hierarchy of $NP$-partitions”, Proc. 17th Symp. Theor. Aspects Comp. Sci., Lect. Notes Comput. Sci., 1770, Springer-Verlag, Berlin, 2000, 157–168 | MR | Zbl
[3] S. Kosub, “On $NP$-partitions over posets with an application of reducing the set of solutions of $NP$ problems”, Proc. 25th Symp. Math. Found. Comp. Sci., Lect. Notes Comput. Sci., 1893, Springer-Verlag, Berlin, 2000, 467–476 | MR | Zbl
[4] S. Kosub, Complexity and partitions, PhD Thesis, Würzburg, 2000
[5] V. L. Selivanov, “O strukture stepenei obobschennykh indeksnykh mnozhestv”, Algebra i logika, 21:4 (1982), 472–491 | MR
[6] V. L. Selivanov, “Tonkaya ierarkhiya arifmeticheskikh mnozhestv i opredelimye indeksnye mnozhestva”, Matematicheskaya logika i algoritmicheskie problemy, Trudy In-ta matem. SO AN SSSR, 12, 1989, 165–185 | MR | Zbl
[7] V. L. Selivanov, Ierarkhicheskaya klassifikatsiya arifmeticheskikh mnozhestv i indeksnye mnozhestva, dokt. disser., In-t matem. SO AN SSSR, Novosibirsk, 1989
[8] B. A. Davey, H. A. Priestley, Introduction to lattices and order, Cambridge Univ. Press, Cambridge, 1994 | MR | Zbl
[9] J. B. Kruskal, “The theory of well-quasi-ordering: a frequently discovered concept”, J. Comb. Theory, Ser. A, 13:3 (1972), 297–305 | DOI | MR | Zbl
[10] J. B. Kruskal, “Well-quasi-ordering, the tree theorem, and Varzsonyi's conjecture”, Trans. Am. Math. Soc., 95:2 (1960), 210–225 | DOI | MR | Zbl
[11] Yu. L. Ershov, Teoriya numeratsii, Nauka, M., 1977 | MR
[12] V. L. Selivanov, “Fine hierarchies and Boolean terms”, J. Symb. Log., 60:1 (1995), 289–317 | DOI | MR | Zbl
[13] H. Rogers, Theory of recursive functions and effective computability, McGrow Hill, New York, 1967 | MR | Zbl
[14] Y. L. Ershov, “Theorie der Numerierungen I”, Z. math. Log. Grundl. Math., 19:4 (1973), 289–388 | MR
[15] Y. L. Ershov, “Theorie der Numerierungen II”, Z. math. Log. Grundl. Math., 21:6 (1975), 473–584 | MR | Zbl
[16] Yu. L. Ershov, “Ob odnoi ierarkhii mnozhestv III”, Algebra i logika, 9:1 (1970), 34–51 | MR | Zbl
[17] Y. N. Moschovakis, Descriptive set theory, North-Holland, Amsterdam, 1980 | MR | Zbl
[18] V. L. Selivanov, Hierarchies, numerations, index sets, handwritten notes, Novosibirsk, 1992
[19] V. L. Selivanov, “Fine hierarchy of regular $\omega$-languages”, Theor. Comput. Sci., 191:1–2 (1998), 37–59 | DOI | MR | Zbl
[20] V. L. Selivanov, Boolean hierarchy of partitions over reducible bases, Technical report 276, Institut für Informatik, Univ. Würzburg, 2001