Voir la notice de l'article provenant de la source Math-Net.Ru
@article{AL_2004_43_1_a0, author = {B. M. Vernikov}, title = {A {Weaker} {Version} of {Congruence-Permutability} for {Semigroup} {Varieties}}, journal = {Algebra i logika}, pages = {3--31}, publisher = {mathdoc}, volume = {43}, number = {1}, year = {2004}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/AL_2004_43_1_a0/} }
B. M. Vernikov. A Weaker Version of Congruence-Permutability for Semigroup Varieties. Algebra i logika, Tome 43 (2004) no. 1, pp. 3-31. http://geodesic.mathdoc.fr/item/AL_2004_43_1_a0/
[1] G. Grettser, Obschaya teoriya reshetok, Mir, M., 1982 | MR
[2] P. Lipparini, “$n$-permutable varieties satisfy non trivial congruence identities”, Algebra Univers., 33:2 (1995), 159–168 | DOI | MR | Zbl
[3] E. J. Tully, “The equivalence, for semigroup varieties, of two properties concerning congruence relations”, Bull. Am. Math. Soc., 70:3 (1964), 399–400 | DOI | MR | Zbl
[4] F. J. Pastijn, “Commuting fully invariant congruences on free completely regular semigroups”, Trans. Am. Math. Soc., 323:1 (1991), 79–92 | DOI | MR | Zbl
[5] M. Petrich, N. R. Reilly, “The modularity of the lattice of varieties of completely regular semigroups and related representations”, Glasg. Math. J., 32:2 (1990), 137–152 | DOI | MR | Zbl
[6] M. V. Volkov, T. A. Ershova, “The lattice of varieties of semigroups with completely regular square”, Semigroup theory, Monash conf. semigroup theory honour G. B. Preston, Clayton, Australia, 1990, ed. T. E. Hall et al., World Scienti.c, Singapore, 1991, 306–322 | MR | Zbl
[7] B. M. Vernikov, “Distributivity, modularity, and related conditions in lattices of overcommutative semigroup varieties”, Semigroups with applications, including semigroup rings, Int. conf. honour E. S. Lyapin, St.-Petersburg, Russia, 1995, ed. S. I. Kublanovsky et al., Severny Ochag, St.-Petersburg, 1999, 411–439 | Zbl
[8] B. M. Vernikov, M. V. Volkov, “Permutability of fully invariant congruences on relatively free semigroups”, Acta Sci. Math., 63:3–4 (1997), 437–461 | MR | Zbl
[9] B. M. Vernikov, M. V. Volkov, “Commuting fully invariant congruences on free semigroups”, Contrib. Gen. Algebra, 12, ed. D. Dorninger et al., Verlag Johannes Heyn, Klagenfurt, 2000, 391–417 | MR | Zbl
[10] B. M. Vernikov, “Mnogoobraziya polugrupp s multiplikativnymi ogranicheniyami na vpolne invariantnye kongruentsii ikh svobodnykh ob'ektov”, Dokl. RAN, 384:4 (2002), 446–448 | MR | Zbl
[11] M. V. Volkov, “Semigroup varieties with commuting fully invariant congruences on free objects”, Algebra. Proc. int. conf. memory A. I. Mal'cev, part 3 (Novosibirsk, USSR, 1989), Contemp. Math., 131, Am. Math. Soc., Providence, RI, 1992, 295–316 | MR | Zbl
[12] B. M. Vernikov, M. V. Volkov, “Reshetki nilpotentnykh mnogoobrazii polugrupp. II”, Izv. Ural. gos. un-ta (Matem., mekhan.), 1998, no. 10(1), 13–33 | MR | Zbl
[13] B. M. Vernikov, M. V. Volkov, “Stroenie reshetok mnogoobrazii nilpolugrupp”, Izv. Ural. gos. un-ta (Matem., mekhan.), 2000, no. 18(3), 34–52 | MR | Zbl
[14] B. M. Vernikov, “On congruences of $G$-sets”, Comment. Math. Univ. Carol., 38:3 (1997), 603–613 | MR | Zbl
[15] R. N. McKenzie, G. F. McNulty, W. F. Taylor, Algebras. Lattices. Varieties, vol. I, Wadsworth/Cole, Monterey, 1987 | MR | Zbl
[16] E. Nelson, “The lattice of equational classes of semigroups with zero”, Can. Math. Bull., 14:4 (1971), 531–534 | MR | Zbl
[17] M. V. Sapir, E. V. Sukhanov, “O mnogoobraziyakh periodicheskikh polugrupp”, Izv. vuzov. Matem., 1981, no. 4(227), 48–55 | MR | Zbl
[18] T. Evans, “The lattice of semigroup varieties”, Semigroup Forum, 2:1 (1971), 1–43 | DOI | MR | Zbl
[19] Gy. Pollák, “On the consequences of permutation identities”, Acta Sci. Math., 34 (1973), 323–333 | MR | Zbl