A Weaker Version of Congruence-Permutability for Semigroup Varieties
Algebra i logika, Tome 43 (2004) no. 1, pp. 3-31.

Voir la notice de l'article provenant de la source Math-Net.Ru

Congruences $\alpha$ and $\beta$ are 2.5-permutable if $\alpha\vee\beta=\alpha\beta\cup\beta\alpha$, where $\vee$ is a union in the congruence lattice and $\cup$ is the set-theoretic union. A semigroup variety $\mathcal V$ is $fi$-permutable ($fi$-2.5-permutable) if every two fully invariant congruences are permutable (2.5-permutable) on all $\mathcal V$-free semigroups. Previously, a description has been furnished for $fi$-permutable semigroup varieties. Here, it is proved that a semigroup variety is $fi$-2.5-permutable iff it either consists of completely simple semigroups, or coincides with a variety of all semilattices, or is contained in one of the explicitly specified nil-semigroup varieties. As a consequence we see that (a) for semigroup varieties that are not nil-varieties, the property of being $fi$-2.5-permutable is equivalent to being $fi$-permutable; (b) for a nil-variety $\mathcal V$, if the lattice $L(\mathcal V)$ of its subvarieties is distributive then is $fi$-2.5-permutable; (c) if $\mathcal V$ is combinatorial or is not completely simple then the fact that $\mathcal V$ is $fi$-2.5-permutable implies that $L(\mathcal V)$ belongs to a variety generated by a 5-element modular non-distributive lattice.
Keywords: variety, semilattice, nil-semigroup, congruence-permutability.
@article{AL_2004_43_1_a0,
     author = {B. M. Vernikov},
     title = {A {Weaker} {Version} of {Congruence-Permutability} for {Semigroup} {Varieties}},
     journal = {Algebra i logika},
     pages = {3--31},
     publisher = {mathdoc},
     volume = {43},
     number = {1},
     year = {2004},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/AL_2004_43_1_a0/}
}
TY  - JOUR
AU  - B. M. Vernikov
TI  - A Weaker Version of Congruence-Permutability for Semigroup Varieties
JO  - Algebra i logika
PY  - 2004
SP  - 3
EP  - 31
VL  - 43
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AL_2004_43_1_a0/
LA  - ru
ID  - AL_2004_43_1_a0
ER  - 
%0 Journal Article
%A B. M. Vernikov
%T A Weaker Version of Congruence-Permutability for Semigroup Varieties
%J Algebra i logika
%D 2004
%P 3-31
%V 43
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AL_2004_43_1_a0/
%G ru
%F AL_2004_43_1_a0
B. M. Vernikov. A Weaker Version of Congruence-Permutability for Semigroup Varieties. Algebra i logika, Tome 43 (2004) no. 1, pp. 3-31. http://geodesic.mathdoc.fr/item/AL_2004_43_1_a0/

[1] G. Grettser, Obschaya teoriya reshetok, Mir, M., 1982 | MR

[2] P. Lipparini, “$n$-permutable varieties satisfy non trivial congruence identities”, Algebra Univers., 33:2 (1995), 159–168 | DOI | MR | Zbl

[3] E. J. Tully, “The equivalence, for semigroup varieties, of two properties concerning congruence relations”, Bull. Am. Math. Soc., 70:3 (1964), 399–400 | DOI | MR | Zbl

[4] F. J. Pastijn, “Commuting fully invariant congruences on free completely regular semigroups”, Trans. Am. Math. Soc., 323:1 (1991), 79–92 | DOI | MR | Zbl

[5] M. Petrich, N. R. Reilly, “The modularity of the lattice of varieties of completely regular semigroups and related representations”, Glasg. Math. J., 32:2 (1990), 137–152 | DOI | MR | Zbl

[6] M. V. Volkov, T. A. Ershova, “The lattice of varieties of semigroups with completely regular square”, Semigroup theory, Monash conf. semigroup theory honour G. B. Preston, Clayton, Australia, 1990, ed. T. E. Hall et al., World Scienti.c, Singapore, 1991, 306–322 | MR | Zbl

[7] B. M. Vernikov, “Distributivity, modularity, and related conditions in lattices of overcommutative semigroup varieties”, Semigroups with applications, including semigroup rings, Int. conf. honour E. S. Lyapin, St.-Petersburg, Russia, 1995, ed. S. I. Kublanovsky et al., Severny Ochag, St.-Petersburg, 1999, 411–439 | Zbl

[8] B. M. Vernikov, M. V. Volkov, “Permutability of fully invariant congruences on relatively free semigroups”, Acta Sci. Math., 63:3–4 (1997), 437–461 | MR | Zbl

[9] B. M. Vernikov, M. V. Volkov, “Commuting fully invariant congruences on free semigroups”, Contrib. Gen. Algebra, 12, ed. D. Dorninger et al., Verlag Johannes Heyn, Klagenfurt, 2000, 391–417 | MR | Zbl

[10] B. M. Vernikov, “Mnogoobraziya polugrupp s multiplikativnymi ogranicheniyami na vpolne invariantnye kongruentsii ikh svobodnykh ob'ektov”, Dokl. RAN, 384:4 (2002), 446–448 | MR | Zbl

[11] M. V. Volkov, “Semigroup varieties with commuting fully invariant congruences on free objects”, Algebra. Proc. int. conf. memory A. I. Mal'cev, part 3 (Novosibirsk, USSR, 1989), Contemp. Math., 131, Am. Math. Soc., Providence, RI, 1992, 295–316 | MR | Zbl

[12] B. M. Vernikov, M. V. Volkov, “Reshetki nilpotentnykh mnogoobrazii polugrupp. II”, Izv. Ural. gos. un-ta (Matem., mekhan.), 1998, no. 10(1), 13–33 | MR | Zbl

[13] B. M. Vernikov, M. V. Volkov, “Stroenie reshetok mnogoobrazii nilpolugrupp”, Izv. Ural. gos. un-ta (Matem., mekhan.), 2000, no. 18(3), 34–52 | MR | Zbl

[14] B. M. Vernikov, “On congruences of $G$-sets”, Comment. Math. Univ. Carol., 38:3 (1997), 603–613 | MR | Zbl

[15] R. N. McKenzie, G. F. McNulty, W. F. Taylor, Algebras. Lattices. Varieties, vol. I, Wadsworth/Cole, Monterey, 1987 | MR | Zbl

[16] E. Nelson, “The lattice of equational classes of semigroups with zero”, Can. Math. Bull., 14:4 (1971), 531–534 | MR | Zbl

[17] M. V. Sapir, E. V. Sukhanov, “O mnogoobraziyakh periodicheskikh polugrupp”, Izv. vuzov. Matem., 1981, no. 4(227), 48–55 | MR | Zbl

[18] T. Evans, “The lattice of semigroup varieties”, Semigroup Forum, 2:1 (1971), 1–43 | DOI | MR | Zbl

[19] Gy. Pollák, “On the consequences of permutation identities”, Acta Sci. Math., 34 (1973), 323–333 | MR | Zbl