Positive Numberings of Families of Sets in the Ershov Hierarchy
Algebra i logika, Tome 42 (2003) no. 6, pp. 737-746
Voir la notice de l'article provenant de la source Math-Net.Ru
It is proved that there exist infinitely many positive undecidable $\Sigma^{-1}_n$-computable numberings of every infinite family $\mathcal S\subseteq\Sigma^{-1}_n$ that admits at least one $\Sigma^{-1}_n$-computable numbering and contains either the empty set, for even $n$, or $N$ for odd $n$.
Keywords:
Ershov hierarchy, positive undecidable $\Sigma^{-1}_n$-computable numbering.
@article{AL_2003_42_6_a6,
author = {Zh. T. Talasbaeva},
title = {Positive {Numberings} of {Families} of {Sets} in the {Ershov} {Hierarchy}},
journal = {Algebra i logika},
pages = {737--746},
publisher = {mathdoc},
volume = {42},
number = {6},
year = {2003},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/AL_2003_42_6_a6/}
}
Zh. T. Talasbaeva. Positive Numberings of Families of Sets in the Ershov Hierarchy. Algebra i logika, Tome 42 (2003) no. 6, pp. 737-746. http://geodesic.mathdoc.fr/item/AL_2003_42_6_a6/