A Question in the Theory of Totally Local Formations of Finite Groups
Algebra i logika, Tome 42 (2003) no. 6, pp. 727-736

Voir la notice de l'article provenant de la source Math-Net.Ru

It is proved that all proper totally local subformations of a non one-generated totally local formation $\mathfrak F$ of finite groups are one-generated iff $\mathfrak F$ coincides with a formation $\mathfrak S_\pi$ of all soluble $\pi$-groups, where $|\pi|=2$.
Keywords: totally local formation of finite groups
Mots-clés : soluble $\pi$-group.
@article{AL_2003_42_6_a5,
     author = {V. G. Safonov},
     title = {A {Question} in the {Theory} of {Totally} {Local} {Formations} of {Finite} {Groups}},
     journal = {Algebra i logika},
     pages = {727--736},
     publisher = {mathdoc},
     volume = {42},
     number = {6},
     year = {2003},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/AL_2003_42_6_a5/}
}
TY  - JOUR
AU  - V. G. Safonov
TI  - A Question in the Theory of Totally Local Formations of Finite Groups
JO  - Algebra i logika
PY  - 2003
SP  - 727
EP  - 736
VL  - 42
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AL_2003_42_6_a5/
LA  - ru
ID  - AL_2003_42_6_a5
ER  - 
%0 Journal Article
%A V. G. Safonov
%T A Question in the Theory of Totally Local Formations of Finite Groups
%J Algebra i logika
%D 2003
%P 727-736
%V 42
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AL_2003_42_6_a5/
%G ru
%F AL_2003_42_6_a5
V. G. Safonov. A Question in the Theory of Totally Local Formations of Finite Groups. Algebra i logika, Tome 42 (2003) no. 6, pp. 727-736. http://geodesic.mathdoc.fr/item/AL_2003_42_6_a5/