A Question in the Theory of Totally Local Formations of Finite Groups
Algebra i logika, Tome 42 (2003) no. 6, pp. 727-736
Voir la notice de l'article provenant de la source Math-Net.Ru
It is proved that all proper totally local subformations of a non one-generated totally local formation $\mathfrak F$ of finite groups are one-generated iff $\mathfrak F$ coincides with a formation $\mathfrak S_\pi$ of all soluble $\pi$-groups, where $|\pi|=2$.
Keywords:
totally local formation of finite groups
Mots-clés : soluble $\pi$-group.
Mots-clés : soluble $\pi$-group.
@article{AL_2003_42_6_a5,
author = {V. G. Safonov},
title = {A {Question} in the {Theory} of {Totally} {Local} {Formations} of {Finite} {Groups}},
journal = {Algebra i logika},
pages = {727--736},
publisher = {mathdoc},
volume = {42},
number = {6},
year = {2003},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/AL_2003_42_6_a5/}
}
V. G. Safonov. A Question in the Theory of Totally Local Formations of Finite Groups. Algebra i logika, Tome 42 (2003) no. 6, pp. 727-736. http://geodesic.mathdoc.fr/item/AL_2003_42_6_a5/