A Generalization of a Two-Parameter Quantization for the Group $GL_2(k)$
Algebra i logika, Tome 42 (2003) no. 6, pp. 692-711.

Voir la notice de l'article provenant de la source Math-Net.Ru

We generalize a well-known two-parameter quantization for the group $GL_2(k)$ (over an arbitrary field $k$). Specifically, a certain class of Hopf algebras is constructed containing that quantization. The algebras are constructed given an arbitrary coalgebra and an arbitrary pair of its commuting anti-isomorphisms, and are defined by quadratic relations. They are densely linked to the compact quantum groups introduced by Woronowicz. We give examples of Hopf algebras that can be rowed up to the two-parameter quantization for $GL_2(k)$.
Keywords: Hopf algebra, compact quantum group, two-parameter quantization.
@article{AL_2003_42_6_a3,
     author = {A. N. Koryukin},
     title = {A {Generalization} of a {Two-Parameter} {Quantization} for the {Group} $GL_2(k)$},
     journal = {Algebra i logika},
     pages = {692--711},
     publisher = {mathdoc},
     volume = {42},
     number = {6},
     year = {2003},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/AL_2003_42_6_a3/}
}
TY  - JOUR
AU  - A. N. Koryukin
TI  - A Generalization of a Two-Parameter Quantization for the Group $GL_2(k)$
JO  - Algebra i logika
PY  - 2003
SP  - 692
EP  - 711
VL  - 42
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AL_2003_42_6_a3/
LA  - ru
ID  - AL_2003_42_6_a3
ER  - 
%0 Journal Article
%A A. N. Koryukin
%T A Generalization of a Two-Parameter Quantization for the Group $GL_2(k)$
%J Algebra i logika
%D 2003
%P 692-711
%V 42
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AL_2003_42_6_a3/
%G ru
%F AL_2003_42_6_a3
A. N. Koryukin. A Generalization of a Two-Parameter Quantization for the Group $GL_2(k)$. Algebra i logika, Tome 42 (2003) no. 6, pp. 692-711. http://geodesic.mathdoc.fr/item/AL_2003_42_6_a3/

[1] S. L. Woronowicz, “Compact matrix pseudogroups”, Commun. Math. Phys., 111 (1987), 613–665 | DOI | MR | Zbl

[2] S. L. Woronowicz, “Tannaka-Krein duality for compact matrix pseudogroups. Twisted $SU(N)$ group”, Invent. Math., 93:1 (1998), 35–76 | DOI | MR

[3] C. Kassel, Quantum Groups, Grad. Texts Math., 155, Springer-Verlag, New York, 1995 | MR | Zbl

[4] S. Montgomery, Hopf Algebras and Their Actions on Rings, CBMS Reg. Conf. Ser. Math., 82, Am. Math. Soc., Providence, RI, 1993 | MR