Structure of a Conjugating Automorphism Group
Algebra i logika, Tome 42 (2003) no. 5, pp. 515-541

Voir la notice de l'article provenant de la source Math-Net.Ru

We examine the automorphism group ${\rm Aut}(F_n)$ of a free group $F_n$ of rank $n\geqslant 2$ on free generators $x_1,x_2,\ldots,x_n$. It is known that ${\rm Aut}(F_2)$ can be built from cyclic subgroups using a free and semidirect product. A question remains open as to whether this result can be extended to the case $n>2$. Every automorphism of ${\rm Aut}(F_n)$ sending a generator $x_i$ to an element $f_i^{-1}x_{\pi(i)}f_i$, where $f_i\in F_n$ and $\pi$ is some permutation on a symmetric group $S_n$, is called a conjugating automorphism. The conjugating automorphism group is denoted $C_n$. A set of automorphisms for which $\pi$ is the identity permutation form a basis-conjugating automorphism group, denoted $Cb_n$. It is proved that $Cb_n$ can be factored into a semidirect product of some groups. As a consequence we obtain a normal form for words in $C_n$. For $n\geqslant 4$, $C_n$ and $Cb_n$ have an undecidable occurrence problem in finitely generated subgroups. It is also shown that $C_n$, $n\geqslant 2$, is generated by at most four elements, and we find its respective genetic code, and that $Cb_n$, $n\geqslant 2$, has no proper verbal subgroups of finite width.
Keywords: conjugating automorphism group, basis-conjugating automorphism group, occurrence problem in finitely generated subgroups, factorization of a group into a semidirect product.
@article{AL_2003_42_5_a0,
     author = {V. G. Bardakov},
     title = {Structure of {a~Conjugating} {Automorphism} {Group}},
     journal = {Algebra i logika},
     pages = {515--541},
     publisher = {mathdoc},
     volume = {42},
     number = {5},
     year = {2003},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/AL_2003_42_5_a0/}
}
TY  - JOUR
AU  - V. G. Bardakov
TI  - Structure of a Conjugating Automorphism Group
JO  - Algebra i logika
PY  - 2003
SP  - 515
EP  - 541
VL  - 42
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AL_2003_42_5_a0/
LA  - ru
ID  - AL_2003_42_5_a0
ER  - 
%0 Journal Article
%A V. G. Bardakov
%T Structure of a Conjugating Automorphism Group
%J Algebra i logika
%D 2003
%P 515-541
%V 42
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AL_2003_42_5_a0/
%G ru
%F AL_2003_42_5_a0
V. G. Bardakov. Structure of a Conjugating Automorphism Group. Algebra i logika, Tome 42 (2003) no. 5, pp. 515-541. http://geodesic.mathdoc.fr/item/AL_2003_42_5_a0/