Convex Subgroups of Partially Right-Ordered Groups
Algebra i logika, Tome 42 (2003) no. 4, pp. 497-509.

Voir la notice de l'article provenant de la source Math-Net.Ru

We study into the question of whether a partial order can be induced from a partially right-ordered group $G$ onto a space $R(G:H)$ of right cosets of $G$ w.r.t. some subgroup $H$ of $G$. Examples are constructed showing that the condition of being convex for $H$ in $G$ is insufficient for this. A necessary and sufficient condition (in terms of a subgroup $H$ and a positive cone $P$ of $G$) is specified under which an order of $G$ can be induced onto $R(G:H)$. Sufficient conditions are also given. We establish properties of the class of partially right-ordered groups $G$ for which $R(G:H)$ is partially ordered for every convex subgroup $H$, and properties of the class of groups such that $R(G:H)$ is partially ordered for every partial right order $P$ on $G$ and every subgroup $H$ that is convex under $P$.
Keywords: partially right-ordered group, convex subgroup.
@article{AL_2003_42_4_a4,
     author = {A. M. Protopopov},
     title = {Convex {Subgroups} of {Partially} {Right-Ordered} {Groups}},
     journal = {Algebra i logika},
     pages = {497--509},
     publisher = {mathdoc},
     volume = {42},
     number = {4},
     year = {2003},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/AL_2003_42_4_a4/}
}
TY  - JOUR
AU  - A. M. Protopopov
TI  - Convex Subgroups of Partially Right-Ordered Groups
JO  - Algebra i logika
PY  - 2003
SP  - 497
EP  - 509
VL  - 42
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AL_2003_42_4_a4/
LA  - ru
ID  - AL_2003_42_4_a4
ER  - 
%0 Journal Article
%A A. M. Protopopov
%T Convex Subgroups of Partially Right-Ordered Groups
%J Algebra i logika
%D 2003
%P 497-509
%V 42
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AL_2003_42_4_a4/
%G ru
%F AL_2003_42_4_a4
A. M. Protopopov. Convex Subgroups of Partially Right-Ordered Groups. Algebra i logika, Tome 42 (2003) no. 4, pp. 497-509. http://geodesic.mathdoc.fr/item/AL_2003_42_4_a4/

[1] V. M. Kopytov, N. Ya. Medvedev, Pravouporyadochennye gruppy, Sibirskaya shkola algebry i logiki, Nauchnaya kniga (NII MIOO NGU), Novosibirsk, 1996 | MR | Zbl

[2] M. I. Kargapolov, Yu. I. Merzlyakov, Osnovy teorii grupp, Nauka, M., 1996 | MR | Zbl

[3] A. Yu. Olshanskii, Geometriya opredelyayuschikh sootnoshenii v gruppakh, Nauka, M., 1989 | MR