Constructive and Non-Constructive Infinite Formulas in Computable Structures
Algebra i logika, Tome 42 (2003) no. 4, pp. 391-412
Cet article a éte moissonné depuis la source Math-Net.Ru
A transition from arbitrary $L_{\omega_1\omega}$-formulas to computable formulas in the class of computable structures is considered. It is shown that transition of a certain type is possible which doubles the complexity of the formulas. In addition, the complexity jump is analyzed for the transition from an arbitrary Scott family consisting of $L_{\omega_1\omega}$-formulas to a computable Scott family in a fixed computable structure. Exact estimates of this jump are found.
Keywords:
computable structure, computable formula, Scott family.
@article{AL_2003_42_4_a0,
author = {P. E. Alaev},
title = {Constructive and {Non-Constructive} {Infinite} {Formulas} in {Computable} {Structures}},
journal = {Algebra i logika},
pages = {391--412},
year = {2003},
volume = {42},
number = {4},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/AL_2003_42_4_a0/}
}
P. E. Alaev. Constructive and Non-Constructive Infinite Formulas in Computable Structures. Algebra i logika, Tome 42 (2003) no. 4, pp. 391-412. http://geodesic.mathdoc.fr/item/AL_2003_42_4_a0/
[1] C. J. Ash, “Recursive labelling systems and stability of recursive structures in hyperarithmetical degrees”, Trans. Am. Math. Soc., 298:2 (1986), 497–514 | DOI | MR | Zbl
[2] C. J. Ash, “Categoricity in hyperarithmetical degrees”, Ann. Pure Appl. Logic, 34:1 (1987), 1–14 | DOI | MR | Zbl
[3] C. J. Ash, J. F. Knight, “Relatively recursive expansions”, Fundam. Math., 140:2 (1992), 137–155 | MR | Zbl
[4] C. J. Ash, J. F. Knight, Computable structures and the hyperarithmetical hierarchy, Elsevier Science B.V., Amsterdam a. o., 2000 | MR
[5] Kh. Rodzhers, Teoriya rekursivnykh funktsii i effektivnaya vychislimost, Mir, M., 1972 | MR