Frobenius Groups Generated by Quadratic Elements
Algebra i logika, Tome 42 (2003) no. 3, pp. 271-292.

Voir la notice de l'article provenant de la source Math-Net.Ru

An automorphism $a$ of a group $X$ is said to be quadratic if there exist integers $m=m(a)$ and $n=n(a)$ such that $x^{a^2}=x^n(x^m)^a= x^nx^{ma}$ for any $x\in X$. If $G$ is a Frobenius group then an element $g\in G$ is said to be quadratic if $g$ induces, by conjugation in the core of $G$, a quadratic automorphism. By definition, a group $H$ acts on a group $F$ freely if $f^h=f$ for $f\in F$ and $h\in H$ only with $f=1$ or $h=1$. It is proved that a Frobenius group generated by two quadratic elements is finite and its core is commutative. In particular, any Frobenius group generated by two elements of order at most 4 is finite. Also we argue that a Frobenius group with finitely generated soluble core is finite. The results mentioned are used to show that a group $G$ acting freely on an Abelian group is finite if it is generated by elements of order 3, and the order of a product of every two elements of order 3 in $G$ is finite.
Mots-clés : Frobenius group
Keywords: quadratic automorphism, quadratic element.
@article{AL_2003_42_3_a1,
     author = {A. Kh. Zhurtov and V. D. Mazurov},
     title = {Frobenius {Groups} {Generated} by {Quadratic} {Elements}},
     journal = {Algebra i logika},
     pages = {271--292},
     publisher = {mathdoc},
     volume = {42},
     number = {3},
     year = {2003},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/AL_2003_42_3_a1/}
}
TY  - JOUR
AU  - A. Kh. Zhurtov
AU  - V. D. Mazurov
TI  - Frobenius Groups Generated by Quadratic Elements
JO  - Algebra i logika
PY  - 2003
SP  - 271
EP  - 292
VL  - 42
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AL_2003_42_3_a1/
LA  - ru
ID  - AL_2003_42_3_a1
ER  - 
%0 Journal Article
%A A. Kh. Zhurtov
%A V. D. Mazurov
%T Frobenius Groups Generated by Quadratic Elements
%J Algebra i logika
%D 2003
%P 271-292
%V 42
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AL_2003_42_3_a1/
%G ru
%F AL_2003_42_3_a1
A. Kh. Zhurtov; V. D. Mazurov. Frobenius Groups Generated by Quadratic Elements. Algebra i logika, Tome 42 (2003) no. 3, pp. 271-292. http://geodesic.mathdoc.fr/item/AL_2003_42_3_a1/

[1] Yu. M. Gorchakov, “O beskonechnykh gruppakh Frobeniusa”, Doklady AN SSSR, 152:4 (1963), 787–789 | Zbl

[2] V. P. Shunkov, “Ob odnom praznike neprostoty dlya grupp”, Algebra i logika, 14:5 (1975), 576–603 | MR | Zbl

[3] O. H. Kegel, Lectures on locally finite groups, Oxford, 1969 | Zbl

[4] P. M. Neumann, P. J. Rowley, “Free actions of abelian groups on groups”, Geometry and cohomology in group theory, Durham, 1994, Lond. Math. Soc. Lect. Note Ser., 252, Cambridge Univ. Press, Cambridge, 1998, 291–295 | MR | Zbl

[5] A. I. Sozutov, V. P. Shunkov, “Ob odnom obobschenii teoremy Frobeniusa na beskonechnye gruppy”, Matem. sb., 100(142):4(8) (1976), 495–506 | MR | Zbl

[6] J. G. Thompson, “Normal $p$-complements for finite groups”, Math. Z., 72 (1959/1960), 332–354 | DOI | MR

[7] H. Zassenhaus, “Kennzeichnung endlicher linearen Gruppen als Permutations-gruppen”, Abhandl. math. Semin. Univ. Hamburg, 11 (1936), 17–40 | DOI

[8] V. V. Bludov, “O gruppakh Frobeniusa”, Sib. matem. zh., 38:6 (1997), 1219–1221 | MR | Zbl

[9] A. Kh. Zhurtov, “O regulyarnykh avtomorfizmakh poryadka 3 i parakh Frobeniusa”, Sib. matem. zh., 41:2 (2000), 329–338 | MR | Zbl

[10] R. D. Carmichael, Introduction to the theory of groups of finite order, Boston, 1937

[11] M. Schönert et al., Groups, Algorithms and Programming, Lehrstuhl D für Mathematik, RWTH Aachen, 1993

[12] E. I. Khukhro, Nilpotent groups and their automorphisms, de Gruyter Expo. Math., 8, Walter de Gruyter, Berlin, 1993 | MR | Zbl

[13] V. D. Mazurov, V. A. Churkin, “O gruppe, svobodno deistvuyuschei na abelevoi gruppe”, Sib. matem. zh., 42:4 (2001), 888–891 | MR | Zbl