Varieties Defined by Permutations
Algebra i logika, Tome 42 (2003) no. 2, pp. 237-254.

Voir la notice de l'article provenant de la source Math-Net.Ru

We continue to study interrelations between permutative varieties and the cyclic varieties defined by cycles of the form $(1\,2\ldots k)$. A criterion is given determining whether a cyclic variety $G_k$ is interpretable in ${}_nG_\pi$. For a permutation $\pi$ without fixed elements, it is stated that a set of primes $p$ for which ${}_nG_\pi$ is interpretable in $G_p$ in the lattice $\mathbb L^{\rm int}$ is finite. It is also proved that for distinct primes $p_1,\ldots,p_r$, the Helly number of a type $[G_{p_1}]\wedge\ldots\wedge[G_{p_r}]$ in $\mathbb L^{\rm int}$ coincides with dimension of the dual type $[G_{p_1}]\vee\ldots\vee[G_{p_r}]$ and equals $r$.
Keywords: permutative variety, cyclic variety, interpretable variety, Helly number.
@article{AL_2003_42_2_a6,
     author = {D. M. Smirnov},
     title = {Varieties {Defined} by {Permutations}},
     journal = {Algebra i logika},
     pages = {237--254},
     publisher = {mathdoc},
     volume = {42},
     number = {2},
     year = {2003},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/AL_2003_42_2_a6/}
}
TY  - JOUR
AU  - D. M. Smirnov
TI  - Varieties Defined by Permutations
JO  - Algebra i logika
PY  - 2003
SP  - 237
EP  - 254
VL  - 42
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AL_2003_42_2_a6/
LA  - ru
ID  - AL_2003_42_2_a6
ER  - 
%0 Journal Article
%A D. M. Smirnov
%T Varieties Defined by Permutations
%J Algebra i logika
%D 2003
%P 237-254
%V 42
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AL_2003_42_2_a6/
%G ru
%F AL_2003_42_2_a6
D. M. Smirnov. Varieties Defined by Permutations. Algebra i logika, Tome 42 (2003) no. 2, pp. 237-254. http://geodesic.mathdoc.fr/item/AL_2003_42_2_a6/

[1] I. Perkins, “Bases for equational theories of semigroups”, J. Algebra, 11:2 (1968), 298–314 ; P. Perkins, “Bazisy dlya ekvatsionalnykh teorii polugrupp”, Kiberneticheskii sb., 11 (1974), 5–23 | DOI | MR | Zbl

[2] D. M. Smirnov, “Mnogoobraziya, opredelimye podstanovkami”, Algebra i logika, 39:1 (2000), 104–118 | MR | Zbl

[3] D. M. Smirnov, “Algoritm postroeniya mnogoobraziya proizvolno zadannoi konechnoi razmernosti”, Algebra i logika, 37:2 (1998), 167–180 | MR | Zbl

[4] O. C. Garcia, W. Taylor, The lattice of interpretability types of varieties, Mem. Am. Math. Soc., 50 (305), Am. Math. Soc., Providence, RI, 1984 | MR

[5] R. McKenzie, S. Swierczkowski, “Non-covering in the interpretability lattice of equational theories”, Algebra Univers., 30:2 (1993), 157–170 | DOI | MR | Zbl

[6] D. M. Smirnov, “O predstavimosti mnogoobrazii Kantora”, Algebra i logika, 34:4 (1995), 464–471 | MR | Zbl