Voir la notice de l'article provenant de la source Math-Net.Ru
@article{AL_2003_42_2_a4, author = {S. Yu. Podzorov}, title = {Initial {Segments} in {Rogers} {Semilattices} of $\Sigma^0_n${-Computable} {Numberings}}, journal = {Algebra i logika}, pages = {211--226}, publisher = {mathdoc}, volume = {42}, number = {2}, year = {2003}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/AL_2003_42_2_a4/} }
S. Yu. Podzorov. Initial Segments in Rogers Semilattices of $\Sigma^0_n$-Computable Numberings. Algebra i logika, Tome 42 (2003) no. 2, pp. 211-226. http://geodesic.mathdoc.fr/item/AL_2003_42_2_a4/
[1] S. S. Goncharov, A. Sorbi, “Obobschenno vychislimye numeratsii i netrivialnye polureshetki Rodzhersa”, Algebra i logika, 36:6 (1997), 621–641 | MR | Zbl
[2] Kh. Rodzhers, Teoriya rekursivnykh funktsii i effektivnaya vychislimost, Mir, M., 1972 | MR
[3] S. A. Badaev, S. S. Goncharov, “O polureshetkakh Rodzhersa semeistv arifmeticheskikh mnozhestv”, Algebra i logika, 40:5 (2001), 507–522 | MR | Zbl
[4] Yu. L. Ershov, Teoriya numeratsii, Nauka, M., 1977 | MR
[5] S. A. adaev, “Minimalnye numeratsii”, Matematicheskaya logika i teoriya algoritmov, Trudy in-ta matem. SO RAN, 25, 1993, 3–34
[6] Yu. L. Ershov, “Verkhnyaya polureshetka numeratsii konechnogo mnozhestva”, Algebra i logika, 14:3 (1975), 258–284 | MR | Zbl
[7] A. H. Lachlan, “Initial segments of many-one degrees”, Can. J. Math., 22:1 (1970), 75–85 | MR | Zbl
[8] A. H. Lachlan, “Recursively enumerable many-one degrees”, Algebra i logika, 11:3 (1972), 326–358 | MR | Zbl