$E^*$-Stable Theories
Algebra i logika, Tome 42 (2003) no. 2, pp. 194-210.

Voir la notice de l'article provenant de la source Math-Net.Ru

S. Shelah proved that stability of a theory is equivalent to definability of every complete type of that theory. T. Mustafin introduced the concept of being $T^*$-stable, generalizing the notion of being stable. However, $T^*$-stability does not necessitate definability of types. The key result of the present article is proving the definability of types for $E^*$-stable theories. This concept differs from that of being $T^*$-stable by adding the condition of being continuous. As a consequence we arrive at the definability of types over any $P$-sets in $P$-stable theories, which previously was established by T. Nurmagambetov and B. Poizat for types over $P$-models.
Keywords: $E^*$-stable theory, definability of types.
@article{AL_2003_42_2_a3,
     author = {E. A. Palyutin},
     title = {$E^*${-Stable} {Theories}},
     journal = {Algebra i logika},
     pages = {194--210},
     publisher = {mathdoc},
     volume = {42},
     number = {2},
     year = {2003},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/AL_2003_42_2_a3/}
}
TY  - JOUR
AU  - E. A. Palyutin
TI  - $E^*$-Stable Theories
JO  - Algebra i logika
PY  - 2003
SP  - 194
EP  - 210
VL  - 42
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AL_2003_42_2_a3/
LA  - ru
ID  - AL_2003_42_2_a3
ER  - 
%0 Journal Article
%A E. A. Palyutin
%T $E^*$-Stable Theories
%J Algebra i logika
%D 2003
%P 194-210
%V 42
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AL_2003_42_2_a3/
%G ru
%F AL_2003_42_2_a3
E. A. Palyutin. $E^*$-Stable Theories. Algebra i logika, Tome 42 (2003) no. 2, pp. 194-210. http://geodesic.mathdoc.fr/item/AL_2003_42_2_a3/

[1] S. Shelah, “Stable theories”, Isr. J. Math., 7:3 (1969), 187–202 | DOI | MR | Zbl

[2] M. D. Morley, “Categoricity in power”, Trans. Am. Math. Soc., 114:2 (1965), 514–538 | DOI | MR | Zbl

[3] T. G. Mustafin, “Novye ponyatiya stabilnosti teorii”, Trudy sovetsko-frantsuzskogo kollokviuma po teorii modelei, Karaganda, 1990, 112–125 | MR | Zbl

[4] S. Shelah, Classification theory and the number of non-isomorphic models, Stud. Logic Found. Math., 92, North-Holland, Amsterdam, 1978 | MR | Zbl

[5] T. Nurmagambetov, B. Puaza, “O chisle elementarnykh par nad mnozhestvami”, Trudy frantsuzsko-kazakhstanskogo kollokviuma po teorii modelei, Almaty, 1995, 73–82