Degree Spectra of Relations on Boolean Algebras
Algebra i logika, Tome 42 (2003) no. 2, pp. 182-193
Voir la notice de l'article provenant de la source Math-Net.Ru
We show that every computable relation on a computable Boolean algebra $\mathfrak B$ is either definable by a quantifier-free formula with constants from $\mathfrak B$ (in which case it is obviously intrinsically computable) or has infinite degree spectrum.
Keywords:
computable Boolean algebra, computable relation, intrinsically computable relation.
@article{AL_2003_42_2_a2,
author = {S. S. Goncharov and R. Downey and D. Hirschfeldt},
title = {Degree {Spectra} of {Relations} on {Boolean} {Algebras}},
journal = {Algebra i logika},
pages = {182--193},
publisher = {mathdoc},
volume = {42},
number = {2},
year = {2003},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/AL_2003_42_2_a2/}
}
S. S. Goncharov; R. Downey; D. Hirschfeldt. Degree Spectra of Relations on Boolean Algebras. Algebra i logika, Tome 42 (2003) no. 2, pp. 182-193. http://geodesic.mathdoc.fr/item/AL_2003_42_2_a2/