The Lattice of Quasivarieties of Torsion-Free Metabelian Groups
Algebra i logika, Tome 42 (2003) no. 2, pp. 161-181
Voir la notice de l'article provenant de la source Math-Net.Ru
Assume that a quasivariety $\mathcal M$ of groups contains a non-Abelian free metabelian group and a non-Abelian free nilpotent group of class 2. It is proved that the lattice of quasivarieties contained in $\mathcal M$ is infinite and non-modular.
Keywords:
quasivariety of torsion-free metabelian groups, lattice, metabelian group, nilpotent group.
@article{AL_2003_42_2_a1,
author = {A. I. Budkin},
title = {The {Lattice} of {Quasivarieties} of {Torsion-Free} {Metabelian} {Groups}},
journal = {Algebra i logika},
pages = {161--181},
publisher = {mathdoc},
volume = {42},
number = {2},
year = {2003},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/AL_2003_42_2_a1/}
}
A. I. Budkin. The Lattice of Quasivarieties of Torsion-Free Metabelian Groups. Algebra i logika, Tome 42 (2003) no. 2, pp. 161-181. http://geodesic.mathdoc.fr/item/AL_2003_42_2_a1/