Voir la notice de l'article provenant de la source Math-Net.Ru
@article{AL_2003_42_2_a1, author = {A. I. Budkin}, title = {The {Lattice} of {Quasivarieties} of {Torsion-Free} {Metabelian} {Groups}}, journal = {Algebra i logika}, pages = {161--181}, publisher = {mathdoc}, volume = {42}, number = {2}, year = {2003}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/AL_2003_42_2_a1/} }
A. I. Budkin. The Lattice of Quasivarieties of Torsion-Free Metabelian Groups. Algebra i logika, Tome 42 (2003) no. 2, pp. 161-181. http://geodesic.mathdoc.fr/item/AL_2003_42_2_a1/
[1] A. I. Budkin, “O nezavisimoi aksiomatiziruemosti kvazimnogoobrazii razreshimykh grupp”, Algebra i logika, 30:2 (1991), 125–153 | MR | Zbl
[2] A. I. Budkin, “O kvazimnogoobraziyakh, soderzhaschikh nilpotentnye gruppy bez krucheniya”, Algebra i logika, 40:6 (2001), 629–650 | MR | Zbl
[3] A. A. Vinogradov, “Kvazimnogoobraziya abelevykh grupp”, Algebra i logika, 4:6 (1965), 15–19 | MR | Zbl
[4] A. N. Fedorov, Kvazitozhdestva konechnykh 2-nilpotentnykh grupp, dep. v VINITI 5489-V87, M., 1987
[5] S. A. Shakhova, “On the lattice of quasivarieties of nilpotent groups of class 2”, Sib. Adv. Math., 7:3 (1997), 98–125 | MR | Zbl
[6] A. I. Budkin, “O reshetke kvazimnogoobrazii nilpotentnykh grupp”, Algebra i logika, 33:1 (1994), 25–36 | MR | Zbl
[7] A. I. Budkin, V. A. Gorbunov, “K teorii kvazimnogoobrazii algebraicheskikh sistem”, Algebra i logika, 14:2 (1975), 123–142 | MR | Zbl
[8] V. A. Gorbunov, Algebraicheskaya teoriya kvazimnogoobrazii, Sibirskaya shkola algebry i logiki, Nauchnaya kniga, Novosibirsk, 1999 | Zbl
[9] A. I. Maltsev, “O svobodnykh razreshimykh gruppakh”, Dokl. AN SSSR, 130:3 (1960), 495–498
[10] M. I. Kargapolov, Yu. I. Merzlyakov, Osnovy teorii grupp, Nauka, M., 1972 | MR | Zbl
[11] Kh. Neiman, Mnogoobraziya grupp, Mir, M., 1969 | MR
[12] V. M. Kopytov, N. Ya. Medvedev, Pravouporyadochennye gruppy, Sibirskaya shkola algebry i logiki, Nauchnaya kniga (NII MIOO NGU), Novosibirsk, 1996 | MR | Zbl
[13] P. Hall, “Finiteness conditions for soluble groups”, Proc. Lond. Math. Soc., III. Ser., 4:16 (1954), 419–436 | DOI | MR | Zbl