The Lattice of Quasivarieties of Torsion-Free Metabelian Groups
Algebra i logika, Tome 42 (2003) no. 2, pp. 161-181.

Voir la notice de l'article provenant de la source Math-Net.Ru

Assume that a quasivariety $\mathcal M$ of groups contains a non-Abelian free metabelian group and a non-Abelian free nilpotent group of class 2. It is proved that the lattice of quasivarieties contained in $\mathcal M$ is infinite and non-modular.
Keywords: quasivariety of torsion-free metabelian groups, lattice, metabelian group, nilpotent group.
@article{AL_2003_42_2_a1,
     author = {A. I. Budkin},
     title = {The {Lattice} of {Quasivarieties} of {Torsion-Free} {Metabelian} {Groups}},
     journal = {Algebra i logika},
     pages = {161--181},
     publisher = {mathdoc},
     volume = {42},
     number = {2},
     year = {2003},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/AL_2003_42_2_a1/}
}
TY  - JOUR
AU  - A. I. Budkin
TI  - The Lattice of Quasivarieties of Torsion-Free Metabelian Groups
JO  - Algebra i logika
PY  - 2003
SP  - 161
EP  - 181
VL  - 42
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AL_2003_42_2_a1/
LA  - ru
ID  - AL_2003_42_2_a1
ER  - 
%0 Journal Article
%A A. I. Budkin
%T The Lattice of Quasivarieties of Torsion-Free Metabelian Groups
%J Algebra i logika
%D 2003
%P 161-181
%V 42
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AL_2003_42_2_a1/
%G ru
%F AL_2003_42_2_a1
A. I. Budkin. The Lattice of Quasivarieties of Torsion-Free Metabelian Groups. Algebra i logika, Tome 42 (2003) no. 2, pp. 161-181. http://geodesic.mathdoc.fr/item/AL_2003_42_2_a1/

[1] A. I. Budkin, “O nezavisimoi aksiomatiziruemosti kvazimnogoobrazii razreshimykh grupp”, Algebra i logika, 30:2 (1991), 125–153 | MR | Zbl

[2] A. I. Budkin, “O kvazimnogoobraziyakh, soderzhaschikh nilpotentnye gruppy bez krucheniya”, Algebra i logika, 40:6 (2001), 629–650 | MR | Zbl

[3] A. A. Vinogradov, “Kvazimnogoobraziya abelevykh grupp”, Algebra i logika, 4:6 (1965), 15–19 | MR | Zbl

[4] A. N. Fedorov, Kvazitozhdestva konechnykh 2-nilpotentnykh grupp, dep. v VINITI 5489-V87, M., 1987

[5] S. A. Shakhova, “On the lattice of quasivarieties of nilpotent groups of class 2”, Sib. Adv. Math., 7:3 (1997), 98–125 | MR | Zbl

[6] A. I. Budkin, “O reshetke kvazimnogoobrazii nilpotentnykh grupp”, Algebra i logika, 33:1 (1994), 25–36 | MR | Zbl

[7] A. I. Budkin, V. A. Gorbunov, “K teorii kvazimnogoobrazii algebraicheskikh sistem”, Algebra i logika, 14:2 (1975), 123–142 | MR | Zbl

[8] V. A. Gorbunov, Algebraicheskaya teoriya kvazimnogoobrazii, Sibirskaya shkola algebry i logiki, Nauchnaya kniga, Novosibirsk, 1999 | Zbl

[9] A. I. Maltsev, “O svobodnykh razreshimykh gruppakh”, Dokl. AN SSSR, 130:3 (1960), 495–498

[10] M. I. Kargapolov, Yu. I. Merzlyakov, Osnovy teorii grupp, Nauka, M., 1972 | MR | Zbl

[11] Kh. Neiman, Mnogoobraziya grupp, Mir, M., 1969 | MR

[12] V. M. Kopytov, N. Ya. Medvedev, Pravouporyadochennye gruppy, Sibirskaya shkola algebry i logiki, Nauchnaya kniga (NII MIOO NGU), Novosibirsk, 1996 | MR | Zbl

[13] P. Hall, “Finiteness conditions for soluble groups”, Proc. Lond. Math. Soc., III. Ser., 4:16 (1954), 419–436 | DOI | MR | Zbl