Iterative Algebras without Projections
Algebra i logika, Tome 42 (2003) no. 1, pp. 107-122.

Voir la notice de l'article provenant de la source Math-Net.Ru

We deal with iterative algebras of functions of $k$-valued logic lacking projections, which we call algebras without projections. It is shown that a partially ordered set of algebras of functions of $m$-valued logic, for $m>k$, without projections contains an interval isomorphic to the lattice of all iterative algebras of functions of $k$-valued logic. It is found out that every algebra without projections is contained in some maximal algebra without projections, which is the stabilizer of a semigroup of non-surjective transformations of the basic set. It is proved that the stabilizer of a semigroup of all monotone non-surjective transformations of a linearly ordered 3-element set is not a maximal algebra without projections, but the stabilizer of a semigroup of all transformations preserving an arbitrary non one-element subset of the basic set is.
@article{AL_2003_42_1_a6,
     author = {K. L. Safin and E. V. Sukhanov},
     title = {Iterative {Algebras} without {Projections}},
     journal = {Algebra i logika},
     pages = {107--122},
     publisher = {mathdoc},
     volume = {42},
     number = {1},
     year = {2003},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/AL_2003_42_1_a6/}
}
TY  - JOUR
AU  - K. L. Safin
AU  - E. V. Sukhanov
TI  - Iterative Algebras without Projections
JO  - Algebra i logika
PY  - 2003
SP  - 107
EP  - 122
VL  - 42
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AL_2003_42_1_a6/
LA  - ru
ID  - AL_2003_42_1_a6
ER  - 
%0 Journal Article
%A K. L. Safin
%A E. V. Sukhanov
%T Iterative Algebras without Projections
%J Algebra i logika
%D 2003
%P 107-122
%V 42
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AL_2003_42_1_a6/
%G ru
%F AL_2003_42_1_a6
K. L. Safin; E. V. Sukhanov. Iterative Algebras without Projections. Algebra i logika, Tome 42 (2003) no. 1, pp. 107-122. http://geodesic.mathdoc.fr/item/AL_2003_42_1_a6/

[1] S. V. Yablonskii, Vvedenie v diskretnuyu matematiku, izd. 2, pererab. i dop., Nauka, M., 1986 | MR

[2] I. G. Rosenberg, Über die funktionale Vollständigkeit in den mehrwertigen Logiken, Struktur der Funktionen von mehreren Veränderlichen auf endlichen Mengen, 80, Rozpr. Česk. Akad. Věd. Řada Mat. Přir. Věd., 1970 | MR

[3] P. Jeavons, “On the algebraic structure of combinatorial problems”, Theor. Comp. Sci., 200:1–2 (1998), 185–204 | DOI | MR | Zbl

[4] Á. Szendrei, Clones in universal algebra, Sémin. Math. Supér., 99, Les Presses de l'Université de Montreal, 1986 | MR | Zbl

[5] V. G. Bodnarchuk, L. A. Kaluzhnin, V. N. Kotov, B. A. Romov, “Teoriya Galua dlya iterativnykh algebr Posta. I”, Kibernetika, 1969, no. 3, 1–10 | MR | Zbl

[6] V. G. Bodnarchuk, L. A. Kaluzhnin, V. N. Kotov, B. A. Romov, “Teoriya Galua dlya iterativnykh algebr Posta. II”, Kibernetika, 1969, no. 5, 1–9 | Zbl

[7] W. Harnau, “Ein verallgemeinerter Relationenbegriff für die Algebra der mehrwertigen Logik, Teil I (Grundlagen)”, Rostocker Math. Kolloq., 28 (1985), 5–17 | MR | Zbl

[8] W. Harnau, “Ein verallgemeinerter Relationenbegriff für die Algebra der mehrwertigen Logik, Teil II (Relationenpaare)”, Rostocker Math. Kolloq., 31 (1987), 11–20 | MR | Zbl

[9] W. Harnau, “Ein verallgemeinerter Relationenbegriff für die Algebra der mehrwertigen Logik, Teil III (Beweis)”, Rostocker Math. Kolloq., 32 (1987), 15–24 | MR | Zbl

[10] A. A. Bulatov, “On the semigroup property of clones”, Int. conf. “Semigroups and their applications, including semigroup rings” in honour of E. S. Ljapin, St.Petersburg, Russia, 1995, 8–9

[11] J. Slupecki, “Kriterium pelnosci wielowar, tosciowych systemow logiki zdan”, C. R. Séances Soc. Sci. et Lettr. Varsovie, Cl. III, 32 (1939), 102–128

[12] G. A. Burle, “Klassy $k$-znachnoi logiki, soderzhaschie vse funktsii odnoi peremennoi”, Diskr. an., 10 (1967), 3–7 | MR | Zbl

[13] K. L. Safin, “Idealy iterativnykh algebr”, Sib. matem. zh., 36:6 (1995), 1384–1391 | MR | Zbl

[14] A. I. Maltsev, Iterativnye algebry Posta, Novosibirsk, 1976 | MR