Markov Properties of Burnside Varieties of Semigroups
Algebra i logika, Tome 42 (2003) no. 1, pp. 94-106.

Voir la notice de l'article provenant de la source Math-Net.Ru

It is proved that every Markov property of semigroups finitely presented in a variety given by the identity $x^{r_1}=x^{r_2}$, where $r_1>r_2\geqslant 2$, which a one-element semigroup enjoys, is algorithmically non-recognizable.
Keywords: Burnside variety of semigroups, Markov property, finitely presented semigroup, algorithmic non-recognizability of properties.
@article{AL_2003_42_1_a5,
     author = {V. Yu. Popov},
     title = {Markov {Properties} of {Burnside} {Varieties} of {Semigroups}},
     journal = {Algebra i logika},
     pages = {94--106},
     publisher = {mathdoc},
     volume = {42},
     number = {1},
     year = {2003},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/AL_2003_42_1_a5/}
}
TY  - JOUR
AU  - V. Yu. Popov
TI  - Markov Properties of Burnside Varieties of Semigroups
JO  - Algebra i logika
PY  - 2003
SP  - 94
EP  - 106
VL  - 42
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AL_2003_42_1_a5/
LA  - ru
ID  - AL_2003_42_1_a5
ER  - 
%0 Journal Article
%A V. Yu. Popov
%T Markov Properties of Burnside Varieties of Semigroups
%J Algebra i logika
%D 2003
%P 94-106
%V 42
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AL_2003_42_1_a5/
%G ru
%F AL_2003_42_1_a5
V. Yu. Popov. Markov Properties of Burnside Varieties of Semigroups. Algebra i logika, Tome 42 (2003) no. 1, pp. 94-106. http://geodesic.mathdoc.fr/item/AL_2003_42_1_a5/

[1] S. I. Adyan, V. G. Durnev, “Algoritmicheskie problemy dlya grupp i polugrupp”, Uspekhi matem. nauk, 55:2 (2000), 3–95 | MR

[2] A. A. Markov, “Teoriya algorifmov”, Trudy matem. in-ta AN SSSR, 42, 1954, 3–375 | MR | Zbl

[3] S. I. Adyan, “Algoritmicheskaya nerazreshimost problem raspoznavaniya nekotorykh svoistv grupp”, Dokl. AN SSSR, 103:4 (1955), 533–535 | MR | Zbl

[4] S. I. Adyan, “Nerazreshimost nekotorykh algoritmicheskikh problem teorii grupp”, Trudy MMO, 6, 1957, 231–298 | MR | Zbl

[5] S. I. Adyan, “Konechno-opredelennye gruppy i algoritmy”, Dokl. AN SSSR, 117:1 (1957), 9–12 | MR | Zbl

[6] S. I. Adyan, “Ob algoritmicheskikh problemakh i effektivno-polnykh klassakh grupp”, Dokl. AN SSSR, 123:1 (1958), 13–16 | MR | Zbl

[7] M. O. Rabin, “Recursive unsolvability of group theoretic problems”, Ann. Math., 67:1 (1958), 172–194 | DOI | MR | Zbl

[8] L. A. Bokut, “Nerazreshimost nekotorykh algoritmicheskikh problem dlya assotsiativnykh kolets”, Algebra i logika, 9:2 (1970), 137–144 | MR | Zbl

[9] L. A. Bokut, “Nerazreshimost nekotorykh algoritmicheskikh problem dlya algebr Li”, Algebra i logika, 13:2 (1974), 145–152 | MR

[10] R. D. Pavlov, “K probleme raspoznavaniya gruppovykh svoistv”, Matem. zametki, 10:2 (1971), 169–180 | MR | Zbl

[11] G. S. Tseitin, “Otnositelno problemy raspoznavaniya svoistv assotsiativnykh ischislenii”, Dokl. AN SSSR, 107:2 (1956), 209–212

[12] J. W. Addison, One some points of the theory of recursive functions, Dissertation, Univ. Wisconsin, 1954

[13] Yu. M. Vazhenin, Ob algoritmicheskoi neraspoznavaemosti markovskikh svoistv dlya nekotorykh klassov polugrupp, Vtoroi Vsesoyuz. simp. teorii polugrupp, Sverdlovsk, 1978, 14

[14] O. G. Kharlampovich, M. V. Sapir, “Algorithmic problems in varieties”, Int. J. Algebra Comput., 5:4–5 (1995), 379–602 | DOI | MR | Zbl

[15] W. Burnside, “On an unsettled question in the theory of discontinuous groups”, Q. J. Pure Appl. Math., 33 (1902), 230–237

[16] S. I. Adyan, Problema Bernsaida i tozhdestva v gruppakh, Nauka, M., 1975 | MR | Zbl

[17] M. V. Sapir, “Problemy bernsaidovskogo tipa i konechnaya baziruemost v mnogoobraziyakh polugrupp”, Izv. AN SSSR, ser. matem., 51:2 (1987), 319–340 | Zbl

[18] A. de Luca, S. Varricchio, “On a conjecture of Brown”, Semigroup Forum, 46:1 (1993), 116–119 | DOI | MR | Zbl

[19] V. S. Guba, “The word problem for relatively free Burnside semigroup satisfying $T^m=T^{m+n}$, with $m>4$ or $m=3$, $n=1$”, Int. J. Algebra Comput., 3:2 (1993), 125–140 | DOI | MR | Zbl

[20] V. S. Guba, “The word problem for relatively free semigroup satisfying $T^m=T^{m+n}$, $m\geqslant3$”, Int. J. Algebra Comput., 3:3 (1993), 335–347 | DOI | MR | Zbl

[21] V. Yu. Popov, “Ob ekvatsionalnykh teoriyakh klassov konechnykh polugrupp”, Algebra i logika, 40:1 (2001), 91–116 | MR