Markov Properties of Burnside Varieties of Semigroups
Algebra i logika, Tome 42 (2003) no. 1, pp. 94-106

Voir la notice de l'article provenant de la source Math-Net.Ru

It is proved that every Markov property of semigroups finitely presented in a variety given by the identity $x^{r_1}=x^{r_2}$, where $r_1>r_2\geqslant 2$, which a one-element semigroup enjoys, is algorithmically non-recognizable.
Keywords: Burnside variety of semigroups, Markov property, finitely presented semigroup, algorithmic non-recognizability of properties.
@article{AL_2003_42_1_a5,
     author = {V. Yu. Popov},
     title = {Markov {Properties} of {Burnside} {Varieties} of {Semigroups}},
     journal = {Algebra i logika},
     pages = {94--106},
     publisher = {mathdoc},
     volume = {42},
     number = {1},
     year = {2003},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/AL_2003_42_1_a5/}
}
TY  - JOUR
AU  - V. Yu. Popov
TI  - Markov Properties of Burnside Varieties of Semigroups
JO  - Algebra i logika
PY  - 2003
SP  - 94
EP  - 106
VL  - 42
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AL_2003_42_1_a5/
LA  - ru
ID  - AL_2003_42_1_a5
ER  - 
%0 Journal Article
%A V. Yu. Popov
%T Markov Properties of Burnside Varieties of Semigroups
%J Algebra i logika
%D 2003
%P 94-106
%V 42
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AL_2003_42_1_a5/
%G ru
%F AL_2003_42_1_a5
V. Yu. Popov. Markov Properties of Burnside Varieties of Semigroups. Algebra i logika, Tome 42 (2003) no. 1, pp. 94-106. http://geodesic.mathdoc.fr/item/AL_2003_42_1_a5/