Markov Properties of Burnside Varieties of Semigroups
Algebra i logika, Tome 42 (2003) no. 1, pp. 94-106
Voir la notice de l'article provenant de la source Math-Net.Ru
It is proved that every Markov property of semigroups finitely presented in a variety given by the identity $x^{r_1}=x^{r_2}$, where $r_1>r_2\geqslant 2$, which a one-element semigroup enjoys, is algorithmically non-recognizable.
Keywords:
Burnside variety of semigroups, Markov property, finitely presented semigroup, algorithmic non-recognizability of properties.
@article{AL_2003_42_1_a5,
author = {V. Yu. Popov},
title = {Markov {Properties} of {Burnside} {Varieties} of {Semigroups}},
journal = {Algebra i logika},
pages = {94--106},
publisher = {mathdoc},
volume = {42},
number = {1},
year = {2003},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/AL_2003_42_1_a5/}
}
V. Yu. Popov. Markov Properties of Burnside Varieties of Semigroups. Algebra i logika, Tome 42 (2003) no. 1, pp. 94-106. http://geodesic.mathdoc.fr/item/AL_2003_42_1_a5/