Groups Containing a Self-Centralizing Subgroup of Order~3
Algebra i logika, Tome 42 (2003) no. 1, pp. 51-64.

Voir la notice de l'article provenant de la source Math-Net.Ru

In 1962 Feit and Thompson obtained a description of finite groups containing a subgroup $X$ of order 3 which coincides with its centralizer. This result is carried over arbitrary groups with the condition that $X$ with every one of its conjugates generate a finite subgroup. We prove the following theorem. Theorem. Suppose that a group $G$ contains a subgroup $X$ of order $3$ such that $C_G(X)=\langle X\rangle$. If, for every $g\in G$, the subgroup $\langle X,X^g\rangle$ is finite, then one of the following statements holds: $(1)$ $G=NN_G(X)$ for a periodic nilpotent subgroup $N$ of class $2$, and $NX$ is a Frobenius group with core $N$ and complement $X$. $(2)$ $G=NA$, where $A$ is isomorphic to $A_5\simeq SL_2(4)$ and $N$ is a normal elementary Abelian $2$-subgroup; here, $N$ is a direct product of order $16$ subgroups normal in $G$ and isomorphic to the natural $SL_2(4)$-module of dimension $2$ over a field of order $4$. $(3)$ $G$ is isomorphic to $L_2(7)$. In particular, $G$ is locally finite.
Mots-clés : group, Frobenius group
Keywords: centralizer, conjugate subgroup, normal subgroup, nilpotent subgroup, field.
@article{AL_2003_42_1_a3,
     author = {V. D. Mazurov},
     title = {Groups {Containing} a {Self-Centralizing} {Subgroup} of {Order~3}},
     journal = {Algebra i logika},
     pages = {51--64},
     publisher = {mathdoc},
     volume = {42},
     number = {1},
     year = {2003},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/AL_2003_42_1_a3/}
}
TY  - JOUR
AU  - V. D. Mazurov
TI  - Groups Containing a Self-Centralizing Subgroup of Order~3
JO  - Algebra i logika
PY  - 2003
SP  - 51
EP  - 64
VL  - 42
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AL_2003_42_1_a3/
LA  - ru
ID  - AL_2003_42_1_a3
ER  - 
%0 Journal Article
%A V. D. Mazurov
%T Groups Containing a Self-Centralizing Subgroup of Order~3
%J Algebra i logika
%D 2003
%P 51-64
%V 42
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AL_2003_42_1_a3/
%G ru
%F AL_2003_42_1_a3
V. D. Mazurov. Groups Containing a Self-Centralizing Subgroup of Order~3. Algebra i logika, Tome 42 (2003) no. 1, pp. 51-64. http://geodesic.mathdoc.fr/item/AL_2003_42_1_a3/

[1] W. Feit, J. G. Thompson, “Finite groups which contain a self-centralizing subgroup of order 3”, Nagoya Math. J., 21 (1962), 185–197 | MR | Zbl

[2] S. I. Adyan, “Periodicheskie proizvedeniya grupp”, Tr. matem. in-ta im. V. A. Steklova, 142 (1976), 3–21 | MR | Zbl

[3] S. I. Adian, “Classifications of periodic words and their application in group theory”, Burnside groups, Proc. Workshop Bielefeld, Lect. Notes Math., 806, 1980, 1–40 | MR | Zbl

[4] S. I. Adyan, “O prostote periodicheskikh proizvedenii grupp”, Doklady AN SSSR, 241:4 (1978), 745–748 | MR | Zbl

[5] M. Schönert, et al., Groups, Algorithms and Programming, Lehrstuhl D für Mathematik, RWTH Aachen, 1993

[6] V. P. Shunkov, “Ob odnom priznake neprostoty grupp”, Algebra i logika, 14:5 (1975), 491–522 | MR

[7] A. Kh. Zhurtov, “O regulyarnykh avtomorfizmakh poryadka 3 i parakh Frobeniusa”, Sib. matem. zh., 41:2 (2000), 329–338 | MR | Zbl

[8] W. Burnside, Theory of groups of finite order, 2nd ed., Dover Publ., New York, 1955 | MR | Zbl

[9] G. Higman, Odd characterizations of finite simple groups, Lect. Notes, Michigan University, Michigan, 1968