Symmetry of Sections in Fields of Formal Power Series and a Non-Standard Real Line
Algebra i logika, Tome 42 (2003) no. 1, pp. 26-36

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $R[[G,\beta]]$ be a field of formal power series with real coefficients, whose supports are well ordered subsets of an Abelian group $G$ of cardinality strictly less than $\beta$. For $R[[G,\beta]]$, we give criteria of a section being symmetric and of a symmetric section being Dedekind. It is proved that an $\alpha^+$-saturated non-standard real line $^{*}R$ is isomorphic to some field of the form $R[[G,\alpha^+]]$. For $^{*}R$, some consequences are inferred regarding symmetric sections, and the cofinality of “banks” of the sections.
@article{AL_2003_42_1_a1,
     author = {N. Yu. Galanova},
     title = {Symmetry of {Sections} in {Fields} of {Formal} {Power} {Series} and a {Non-Standard} {Real} {Line}},
     journal = {Algebra i logika},
     pages = {26--36},
     publisher = {mathdoc},
     volume = {42},
     number = {1},
     year = {2003},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/AL_2003_42_1_a1/}
}
TY  - JOUR
AU  - N. Yu. Galanova
TI  - Symmetry of Sections in Fields of Formal Power Series and a Non-Standard Real Line
JO  - Algebra i logika
PY  - 2003
SP  - 26
EP  - 36
VL  - 42
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AL_2003_42_1_a1/
LA  - ru
ID  - AL_2003_42_1_a1
ER  - 
%0 Journal Article
%A N. Yu. Galanova
%T Symmetry of Sections in Fields of Formal Power Series and a Non-Standard Real Line
%J Algebra i logika
%D 2003
%P 26-36
%V 42
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AL_2003_42_1_a1/
%G ru
%F AL_2003_42_1_a1
N. Yu. Galanova. Symmetry of Sections in Fields of Formal Power Series and a Non-Standard Real Line. Algebra i logika, Tome 42 (2003) no. 1, pp. 26-36. http://geodesic.mathdoc.fr/item/AL_2003_42_1_a1/