Splitting Properties of Total Enumeration Degrees
Algebra i logika, Tome 42 (2003) no. 1, pp. 3-25.

Voir la notice de l'article provenant de la source Math-Net.Ru

We describe general conditions under which relative splittings and specified diamond embeddings are derivable in the local structure of enumeration degrees (e-degrees). In so doing, we touch upon three basic issues: the possibility for studying properties of Turing degrees via enumeration reducibility; general definability problems and the role of splitting and non-splitting; and (emerging from the techniques developed) the description of new relationships between information content and degree theoretic structure.
Keywords: enumeration degrees, Turing degrees, splitting of degrees.
@article{AL_2003_42_1_a0,
     author = {M. M. Arslanov and I. Sh. Kalimullin and S. B. Cooper},
     title = {Splitting {Properties} of {Total} {Enumeration} {Degrees}},
     journal = {Algebra i logika},
     pages = {3--25},
     publisher = {mathdoc},
     volume = {42},
     number = {1},
     year = {2003},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/AL_2003_42_1_a0/}
}
TY  - JOUR
AU  - M. M. Arslanov
AU  - I. Sh. Kalimullin
AU  - S. B. Cooper
TI  - Splitting Properties of Total Enumeration Degrees
JO  - Algebra i logika
PY  - 2003
SP  - 3
EP  - 25
VL  - 42
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AL_2003_42_1_a0/
LA  - ru
ID  - AL_2003_42_1_a0
ER  - 
%0 Journal Article
%A M. M. Arslanov
%A I. Sh. Kalimullin
%A S. B. Cooper
%T Splitting Properties of Total Enumeration Degrees
%J Algebra i logika
%D 2003
%P 3-25
%V 42
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AL_2003_42_1_a0/
%G ru
%F AL_2003_42_1_a0
M. M. Arslanov; I. Sh. Kalimullin; S. B. Cooper. Splitting Properties of Total Enumeration Degrees. Algebra i logika, Tome 42 (2003) no. 1, pp. 3-25. http://geodesic.mathdoc.fr/item/AL_2003_42_1_a0/

[1] C. G. Jockusch, Jr., “Semirecursive sets and positive reducibility”, Trans. Am. Math. Soc., 131:2 (1968), 420–436 | DOI | MR | Zbl

[2] S. Ahmad, “Embedding the diamond in the $\Sigma_2$ enumeration degrees”, J. Symb. Log., 56:1 (1991), 195–212 | DOI | MR | Zbl

[3] S. Ahmad, A. H. Lachlan, “Some special pairs of $\Sigma_2$ $e$-degrees”, Math. Log. Q., 44:4 (1998), 431–449 | DOI | MR | Zbl

[4] M. M. Arslanov, S. B. Cooper, I. Sh. Kalimullin, A. Li, Total degrees and non-splitting properties of $\Sigma^0_2$-enumeration degrees (to appear)

[5] S. B. Cooper, C. S. Copestake, “Properly $\Sigma_2$ enumeration degrees”, Z. Math. Logik Grundlagen Math., 34:6 (1988), 491–522 | DOI | MR | Zbl

[6] S. B. Cooper, “Enumeration reducibility, nondeterministic computations and relative computability of partial functions”, Recursion Theory Week, Lect. Notes Math., 1432, eds. K. Ambos-Spies, G. Müller, G. E. Sacks, 1990, 57–110 | MR | Zbl

[7] A. Sorbi, “The enumeration degrees of the $\Sigma^0_2$ sets”, Complexity, Logic and Recursion Theory, 1997, ed. A. Sorbi, Marcel Dekker, New York, 303–330 | MR | Zbl

[8] P. G. Odifreddi, Classical Recursion Theory, v. II, Studies Logic Found. Math., 143, North-Holland, Amsterdam, 1999 | MR

[9] A. Sorbi, “Sets of generator and automorphism bases for the enumeration degrees”, Ann. Pure Appl. Log., 94:1–3 (1998), 263–272 | DOI | MR | Zbl

[10] M. M. Arslanov, A. Sorbi, “Relative splittings of $0'_e$ in the $\Delta_2^0$-enumeration degrees”, Logic Colloquium 98, Lect. Notes Log., 13, eds. Buss S. Pudlak P., Springer-Verlag, Berlin a. o., 2000, 44–56 | MR

[11] R. I. Soare, Recursively Enumerable Sets and Degrees, Perspect. Math. Log., Omega Series, Springer-Verlag, Heidelberg a. o., 1987 ; R. I. Soar, Vychislimo perechislimye mnozhestva i stepeni, Kazanskoe matem. ob-vo, Kazan, 2000 | MR | MR | Zbl

[12] A. Nies, A. Sorbi, Branching in the enumeration degrees of the $\Sigma_2^0$ sets (to appear)

[13] S. B. Cooper, L. Harrington, A. H. Lachlan, S. Lempp, R. I. Soare, “The $d$-r.e. degrees are not dense”, Ann. Pure Appl. Logic, 55:2 (1991), 125–151 | DOI | MR | Zbl