Keywords: computably enumerable predicate.
@article{AL_2002_41_5_a0,
author = {E. Combarro},
title = {Automorphism {Groups} of {Computably} {Enumerable} {Predicates}},
journal = {Algebra i logika},
pages = {515--530},
year = {2002},
volume = {41},
number = {5},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/AL_2002_41_5_a0/}
}
E. Combarro. Automorphism Groups of Computably Enumerable Predicates. Algebra i logika, Tome 41 (2002) no. 5, pp. 515-530. http://geodesic.mathdoc.fr/item/AL_2002_41_5_a0/
[1] H. B. Enderton, “Elements of recursion theory”, Handbook of mathematical logic, ed. J. Barwise, North-Holland, New York, 1977 | MR
[2] P. Odifreddi, Classical recursion theory, North-Holland, Amsterdam, 1989 | MR | Zbl
[3] M. Blum, I. Marques, “On complexity properties of recursively enumerable sets”, J. Symb. Log., 38:4 (1973), 579–593 | DOI | MR
[4] J. Barwise, “Back and forth through infinitary logic”, Studies in model theory, MAA Stud. Math., 8, ed. M. D. Morley, DC, Math. Assoc. Am., Washington, 1973, 5–34 | MR
[5] D. Kueker, “Definability, automorphisms and infinitary languages”, The syntax and semantics of infinitary languages, Lect. Notes Math., 72, Springer-Verlag, Berlin, 1968, 152–165 | MR
[6] J. J. Rotman, The theory of groups, Allyn and Bacon, Boston, 1965 | MR | Zbl
[7] R. Rogers, Theory of recursive functions and effective computability, McGraw-Hill, New York, 1967 ; X. Rodzhers, Teoriya rekursivnykh funktsii i effektivnaya vychislimost, Mir, M., 1972 | MR | Zbl | MR
[8] Yu. L. Ershov, Teoriya numeratsii, Nauka, M., 1977 | MR