A~Class of Strongly Decomposable Abelian Groups
Algebra i logika, Tome 41 (2002) no. 4, pp. 493-509.

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $G$ be a completely decomposable torsion-free Abelian group and $G=\bigoplus G_i$, where $G_i$ is a rank 1 group. If there exists a strongly constructive numbering $\nu$ of $G$ such that $(G,\nu)$ has a recursively enumerable sequence of elements $g_i\in G_i$, then $G$ is called a strongly decomposable group. Let $p_i$, $i\in\omega$, be some sequence of primes whose denominators are degrees of a number $p_i$ and let $A=\bigoplus\limits_{i\in\omega}Q_{p_i}$. A characteristic of the group $A$ is the set of all pairs $\langle p,k\rangle$ of numbers such that $p_{i_1}=\ldots=p_{i_k}=p$ for some numbers $i_1,\ldots,i_k$. We bring in the concept of a quasihyperhyperimmune set, and specify a necessary and sufficient condition on the characteristic of $A$ subject to which the group in question is strongly decomposable. Also, it is proved that every hyperhyperimmune set is quasihyperhyperimmune, the converse being not true.
Keywords: strongly decomposable Abelian group, hyperhyperimmune set, quasihyperhyperimmune set.
@article{AL_2002_41_4_a5,
     author = {N. G. Khisamiev},
     title = {A~Class of {Strongly} {Decomposable} {Abelian} {Groups}},
     journal = {Algebra i logika},
     pages = {493--509},
     publisher = {mathdoc},
     volume = {41},
     number = {4},
     year = {2002},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/AL_2002_41_4_a5/}
}
TY  - JOUR
AU  - N. G. Khisamiev
TI  - A~Class of Strongly Decomposable Abelian Groups
JO  - Algebra i logika
PY  - 2002
SP  - 493
EP  - 509
VL  - 41
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AL_2002_41_4_a5/
LA  - ru
ID  - AL_2002_41_4_a5
ER  - 
%0 Journal Article
%A N. G. Khisamiev
%T A~Class of Strongly Decomposable Abelian Groups
%J Algebra i logika
%D 2002
%P 493-509
%V 41
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AL_2002_41_4_a5/
%G ru
%F AL_2002_41_4_a5
N. G. Khisamiev. A~Class of Strongly Decomposable Abelian Groups. Algebra i logika, Tome 41 (2002) no. 4, pp. 493-509. http://geodesic.mathdoc.fr/item/AL_2002_41_4_a5/

[1] A. I. Maltsev, “O rekursivnykh abelevykh gruppakh”, Dokl. AN SSSR, 146:5 (1962), 1009–1012

[2] N. G. Khisamiev, “Constructive abelian groups”, Handbook of recursive mathematics, v. 2, Elsevier, Amsterdam, 1998, 1177–1230 | MR

[3] H. G. Khisamiev, A. N. Krykpaeva, “Effektivno vpolne razlozhimye abelevy gruppy”, Sib. matem. zh., 38:6 (1997), 1410–1412 | MR | Zbl

[4] N. G. Khisamiev, “Silno konstruktivnye abelevy $p$-gruppy”, Algebra i logika, 22:2 (1983), 198–217 | MR | Zbl

[5] N. G. Khisamiev, O silno vpolne razlozhimykh abelevykh gruppakh, Tez. dokl. mezhdun. konf. “Logika i prilozheniya”, posvyasch. 60-letiyu ak. Yu. L. Ershova, IDMI, Novosibirsk, 2000

[6] M. I. Kargapolov, Yu. I. Merzlyakov, Osnovy teorii grupp, 3-e izd., Nauka, M., 1982 | MR | Zbl

[7] L. Fuks, Beskonechnye abelevy gruppy, t. 1, Mir, M., 1974

[8] Yu. L. Ershov, Problemy razreshimosti i konstruktivnye modeli, Nauka, M., 1980 | MR

[9] A. I. Maltsev, Algoritmy i rekursivnye funktsii, Nauka, M., 1965 | MR

[10] Kh. Rodzhers, Teoriya rekursivnykh funktsii i effektivnaya vychislimost, Mir, M., 1972 | MR