Definability of Least Fixed Points
Algebra i logika, Tome 41 (2002) no. 4, pp. 429-458.

Voir la notice de l'article provenant de la source Math-Net.Ru

Least fixed points of modal logic are studied. We introduce a class of Kripke models and prove that least fixed points of positive operators are definable in these. The class is widest of the known ones in which least fixed points of positive operators are definable.
Keywords: modal logic, least fixed point, positive operator.
@article{AL_2002_41_4_a2,
     author = {S. I. Mardaev},
     title = {Definability of {Least} {Fixed} {Points}},
     journal = {Algebra i logika},
     pages = {429--458},
     publisher = {mathdoc},
     volume = {41},
     number = {4},
     year = {2002},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/AL_2002_41_4_a2/}
}
TY  - JOUR
AU  - S. I. Mardaev
TI  - Definability of Least Fixed Points
JO  - Algebra i logika
PY  - 2002
SP  - 429
EP  - 458
VL  - 41
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AL_2002_41_4_a2/
LA  - ru
ID  - AL_2002_41_4_a2
ER  - 
%0 Journal Article
%A S. I. Mardaev
%T Definability of Least Fixed Points
%J Algebra i logika
%D 2002
%P 429-458
%V 41
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AL_2002_41_4_a2/
%G ru
%F AL_2002_41_4_a2
S. I. Mardaev. Definability of Least Fixed Points. Algebra i logika, Tome 41 (2002) no. 4, pp. 429-458. http://geodesic.mathdoc.fr/item/AL_2002_41_4_a2/

[1] S. I. Mardaev, “Least fixed points in modal logic”, Proceedings of the International Conference on Mathematical Logic to the memory of A. I. Mal'tsev (Novosibirsk, 10–15 avgusta 1999), 2000, v pechati

[2] L. Reidhaar-Olson, “A new proof of the fixed-point theorem of provability logic”, Notre Dame J. Formal Logic, 31:1 (1990), 37–43 | DOI | MR | Zbl

[3] C. Smoryński, Self-reference and modal logic (Universitext), Springer-Verlag, Berlin, 1985 | MR | Zbl

[4] S. I. Mardaev, “Nepodvizhnye tochki modalnykh skhem”, Algebra i logika, 31:5 (1992), 493–498 | MR | Zbl

[5] S. I. Mardaev, “Modalnye $\Pi$-skhemy”, Algebra i teoriya modelei, NGTU, Novosibirsk, 1997, 99–109

[6] S. I. Mardaev, “Fixed points of modal negative operators”, Bull. Sect. Log. Univ. Lódź, 26:3 (1997), 135–138 | MR | Zbl

[7] S. I. Mardaev, “Negativnye modalnye skhemy”, Algebra i logika, 37:3 (1998), 329–337 | MR | Zbl

[8] S. I. Mardaev, “Nepodvizhnye tochki vremennykh operatorov”, Algebra i teoriya modelei $2$, NGTU, Novosibirsk, 1999, 68–77 | MR