Vector Lattices on a Set of Two Generators
Algebra i logika, Tome 41 (2002) no. 4, pp. 391-410

Voir la notice de l'article provenant de la source Math-Net.Ru

It is proved that the center of an automorphism group $\operatorname{Aut}(FVL2)$ of a free vector lattice $FVL2$ on a set of two free generators is isomorphic to a multiplicative group of positive reals. It is shown that the free vector lattice $FVL2$ has an isomorphic representation by continuous piecewise linear functions of the real line; as a consequence, the ideal lattice and the root system for rectifying ideals in $FVL2$ are amply described. Similar results are obtained for a free vector lattice $FVL_Q2$ generated by two elements over a field of rational numbers.
Keywords: free vector lattice, center of an automorphism group, ideal lattice, root system.
@article{AL_2002_41_4_a0,
     author = {N. V. Bayanova and N. Ya. Medvedev},
     title = {Vector {Lattices} on {a~Set} of {Two} {Generators}},
     journal = {Algebra i logika},
     pages = {391--410},
     publisher = {mathdoc},
     volume = {41},
     number = {4},
     year = {2002},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/AL_2002_41_4_a0/}
}
TY  - JOUR
AU  - N. V. Bayanova
AU  - N. Ya. Medvedev
TI  - Vector Lattices on a Set of Two Generators
JO  - Algebra i logika
PY  - 2002
SP  - 391
EP  - 410
VL  - 41
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AL_2002_41_4_a0/
LA  - ru
ID  - AL_2002_41_4_a0
ER  - 
%0 Journal Article
%A N. V. Bayanova
%A N. Ya. Medvedev
%T Vector Lattices on a Set of Two Generators
%J Algebra i logika
%D 2002
%P 391-410
%V 41
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AL_2002_41_4_a0/
%G ru
%F AL_2002_41_4_a0
N. V. Bayanova; N. Ya. Medvedev. Vector Lattices on a Set of Two Generators. Algebra i logika, Tome 41 (2002) no. 4, pp. 391-410. http://geodesic.mathdoc.fr/item/AL_2002_41_4_a0/