The $D_\pi$-Property in a Class of Finite Groups
Algebra i logika, Tome 41 (2002) no. 3, pp. 335-370

Voir la notice de l'article provenant de la source Math-Net.Ru

A finite group $G$ is a $D_\pi$-group for some set $\pi$ of primes if maximal $\pi$-subgroups of $G$ are all conjugate. Assume that every non-Abelian composition factor of the $D_\pi$-group $G$ is isomorphic either to an alternating group, or to one of the sporadic groups, or to a simple group of Lie type over a field whose characteristic belongs to $\pi$. We prove that an extension of $G$ by an arbitrary $D_\pi$-group and every normal subgroup of $G$ are $D_\pi$-groups. This gives partial answers to Questions 3.62 and 13.33 in the “Kourovka Notebook”. Also, we describe all $D_\pi$-groups whose composition factors are isomorphic to alternating, sporadic, and Lie-type groups whose characteristics belong to $\pi$. And bring to a close the description of Hall subgroups in sporadic groups, initiated by F. Gross.
Mots-clés : $D_\pi$-group, sporadic group
Keywords: alternating group, simple group of Lie type, Hall subgroup.
@article{AL_2002_41_3_a4,
     author = {D. O. Revin},
     title = {The $D_\pi${-Property} in {a~Class} of {Finite} {Groups}},
     journal = {Algebra i logika},
     pages = {335--370},
     publisher = {mathdoc},
     volume = {41},
     number = {3},
     year = {2002},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/AL_2002_41_3_a4/}
}
TY  - JOUR
AU  - D. O. Revin
TI  - The $D_\pi$-Property in a Class of Finite Groups
JO  - Algebra i logika
PY  - 2002
SP  - 335
EP  - 370
VL  - 41
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AL_2002_41_3_a4/
LA  - ru
ID  - AL_2002_41_3_a4
ER  - 
%0 Journal Article
%A D. O. Revin
%T The $D_\pi$-Property in a Class of Finite Groups
%J Algebra i logika
%D 2002
%P 335-370
%V 41
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AL_2002_41_3_a4/
%G ru
%F AL_2002_41_3_a4
D. O. Revin. The $D_\pi$-Property in a Class of Finite Groups. Algebra i logika, Tome 41 (2002) no. 3, pp. 335-370. http://geodesic.mathdoc.fr/item/AL_2002_41_3_a4/