$\mathcal Q$-Universal Quasivarieties of Graphs
Algebra i logika, Tome 41 (2002) no. 3, pp. 311-325

Voir la notice de l'article provenant de la source Math-Net.Ru

It is proved that a quasivariety $\mathbf K$ of undirected graphs without loops is $\mathcal Q$-universal if and only if $\mathbf K$ contains some non-bipartite graph.
Keywords: $\mathcal Q$-universal quasivariety, undirected graph
Mots-clés : non-bipartite graph.
@article{AL_2002_41_3_a2,
     author = {A. V. Kravchenko},
     title = {$\mathcal Q${-Universal} {Quasivarieties} of {Graphs}},
     journal = {Algebra i logika},
     pages = {311--325},
     publisher = {mathdoc},
     volume = {41},
     number = {3},
     year = {2002},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/AL_2002_41_3_a2/}
}
TY  - JOUR
AU  - A. V. Kravchenko
TI  - $\mathcal Q$-Universal Quasivarieties of Graphs
JO  - Algebra i logika
PY  - 2002
SP  - 311
EP  - 325
VL  - 41
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AL_2002_41_3_a2/
LA  - ru
ID  - AL_2002_41_3_a2
ER  - 
%0 Journal Article
%A A. V. Kravchenko
%T $\mathcal Q$-Universal Quasivarieties of Graphs
%J Algebra i logika
%D 2002
%P 311-325
%V 41
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AL_2002_41_3_a2/
%G ru
%F AL_2002_41_3_a2
A. V. Kravchenko. $\mathcal Q$-Universal Quasivarieties of Graphs. Algebra i logika, Tome 41 (2002) no. 3, pp. 311-325. http://geodesic.mathdoc.fr/item/AL_2002_41_3_a2/