$\mathcal Q$-Universal Quasivarieties of Graphs
Algebra i logika, Tome 41 (2002) no. 3, pp. 311-325
Voir la notice de l'article provenant de la source Math-Net.Ru
It is proved that a quasivariety $\mathbf K$ of undirected graphs without loops is $\mathcal Q$-universal if and only if $\mathbf K$ contains some non-bipartite graph.
Keywords:
$\mathcal Q$-universal quasivariety, undirected graph
Mots-clés : non-bipartite graph.
Mots-clés : non-bipartite graph.
@article{AL_2002_41_3_a2,
author = {A. V. Kravchenko},
title = {$\mathcal Q${-Universal} {Quasivarieties} of {Graphs}},
journal = {Algebra i logika},
pages = {311--325},
publisher = {mathdoc},
volume = {41},
number = {3},
year = {2002},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/AL_2002_41_3_a2/}
}
A. V. Kravchenko. $\mathcal Q$-Universal Quasivarieties of Graphs. Algebra i logika, Tome 41 (2002) no. 3, pp. 311-325. http://geodesic.mathdoc.fr/item/AL_2002_41_3_a2/