$\mathcal Q$-Universal Quasivarieties of Graphs
Algebra i logika, Tome 41 (2002) no. 3, pp. 311-325.

Voir la notice de l'article provenant de la source Math-Net.Ru

It is proved that a quasivariety $\mathbf K$ of undirected graphs without loops is $\mathcal Q$-universal if and only if $\mathbf K$ contains some non-bipartite graph.
Keywords: $\mathcal Q$-universal quasivariety, undirected graph
Mots-clés : non-bipartite graph.
@article{AL_2002_41_3_a2,
     author = {A. V. Kravchenko},
     title = {$\mathcal Q${-Universal} {Quasivarieties} of {Graphs}},
     journal = {Algebra i logika},
     pages = {311--325},
     publisher = {mathdoc},
     volume = {41},
     number = {3},
     year = {2002},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/AL_2002_41_3_a2/}
}
TY  - JOUR
AU  - A. V. Kravchenko
TI  - $\mathcal Q$-Universal Quasivarieties of Graphs
JO  - Algebra i logika
PY  - 2002
SP  - 311
EP  - 325
VL  - 41
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AL_2002_41_3_a2/
LA  - ru
ID  - AL_2002_41_3_a2
ER  - 
%0 Journal Article
%A A. V. Kravchenko
%T $\mathcal Q$-Universal Quasivarieties of Graphs
%J Algebra i logika
%D 2002
%P 311-325
%V 41
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AL_2002_41_3_a2/
%G ru
%F AL_2002_41_3_a2
A. V. Kravchenko. $\mathcal Q$-Universal Quasivarieties of Graphs. Algebra i logika, Tome 41 (2002) no. 3, pp. 311-325. http://geodesic.mathdoc.fr/item/AL_2002_41_3_a2/

[1] M. V. Sapir, “The lattice of quasi varieties of semigroups”, Algebra Univers., 21:2–3 (1985), 172–180 | DOI | MR | Zbl

[2] S. V. Sizyi, “Kvazimnogoobraziya grafov”, Sib. matem. zh., 35:4 (1994), 879–892 | MR | Zbl

[3] M. E. Adams, W. Dziobiak, “$Q$-universal quasivarieties of algebras”, Proc. Am. Math. Soc., 120:4 (1994), 1053–1059 | DOI | MR | Zbl

[4] V. A. Gorbunov, “Stroenie reshetok mnogoobrazii i reshetok kvazimnogoobrazii: skhodstvo i razlichie. II”, Algebra i logika, 34:4 (1995), 369–397 | MR | Zbl

[5] V. A. Gorbunov, Algebraicheskaya teoriya kvazimnogoobrazii, Sibirskaya shkola algebry i logiki, Nauchnaya kniga, Novosibirsk, 1999 | Zbl

[6] M. E. Adams, W. Dziobiak, “Finite-to-finite universal quasivarieties are $Q$-universal”, Algebra Univers., 46:1–2 (2001), 253–283 | DOI | MR | Zbl

[7] M. E. Adams, W. Dziobiak, “The lattice of quasivarieties of undirected graphs”, Algebra Univers., 47:1 (2002), 7–11 | DOI | MR | Zbl

[8] A. Pultr, V. Trnková, Combinatorial, algebraic and topological representations of groups, semigroups and categories, Academia, Prague, 1980 | MR

[9] V. I. Tumanov, “O kvazimnogoobraziyakh reshetok”, 16-ya Vsesoyuznaya algebraicheskaya konf., Tez. soobschenii, ch. 2, Leningrad, 1981, 135

[10] W. Dziobiak, “On lattice identities satisfied in subquasivariety lattices of varieties of modular lattices”, Algebra Univers., 22:2–3 (1986), 205–214 | DOI | MR | Zbl

[11] M. P. Tropin, “Vlozhimost svobodnoi reshetki v reshetku kvazimnogoobrazii distributivnykh reshetok s psevdodopolneniyami”, Algebra i logika, 22:2 (1983), 159–167 | MR | Zbl

[12] G. Grätzer, H. Lakser, “A note on the implicational class generated by a class of structures”, Can. Math. Bull., 16:4 (1973), 603–605 | MR | Zbl

[13] A. V. Kravchenko, “O reshetochnoi slozhnosti kvazimnogoobrazii grafov i endografov”, Algebra i logika, 36:3 (1997), 273–281 | MR | Zbl

[14] Z. Hedrlin, A. Pultr, “Symmetric relations (undirected graphs) with given semigroups”, Monatsh. Math., 69:4 (1965), 318–324 | DOI | MR

[15] V. A. Gorbunov, A. V. Kravchenko, Universal Horn classes and colour-families of graphs, preprint No 1957, Technische Universität Darmstadt, Darmstadt, 1997 | MR