Simple Special Jordan Superalgebras with Associative Nil-Semisimple Even Part
Algebra i logika, Tome 41 (2002) no. 3, pp. 276-310.

Voir la notice de l'article provenant de la source Math-Net.Ru

We describe unital simple special Jordan superalgebras with associative nil-semisimple even part. In every such superalgebra $J=A+M$, either $M$ is an associative and commutative $A$-module, or the associator space $(A,A,M)$ coincides with $M$. In the former case, if $J$ is not a superalgebra of the non-degenerate bilinear superform then its even part $A$ is a differentiably simple algebra and its odd part $M$ is a finitely generated projective $A$-module of rank 1. Multiplication in $M$ is defined by fixed finite sets of derivations and elements of $A$. If, in addition, $M$ is one-generated then the initial superalgebra is a twisted superalgebra of vector type. The condition of being one-generated for $M$ is satisfied, for instance, if $A$ is local or isomorphic to a polynomial algebra. We also give a description of superalgebras for which $(A,A,M)\neq 0$ and $M\cap [A,M]\ne0$, where $[\, ,\,]$ is a commutator in the associative enveloping superalgebra of $J$. It is shown that such each infinite-dimensional superalgebra may be obtained from a simple Jordan superalgebra whose odd part is an associative module over the even.
Keywords: unital simple special Jordan superalgebra, differentiably simple algebra, projective $A$-module.
@article{AL_2002_41_3_a1,
     author = {V. N. Zhelyabin},
     title = {Simple {Special} {Jordan} {Superalgebras} with {Associative} {Nil-Semisimple} {Even} {Part}},
     journal = {Algebra i logika},
     pages = {276--310},
     publisher = {mathdoc},
     volume = {41},
     number = {3},
     year = {2002},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/AL_2002_41_3_a1/}
}
TY  - JOUR
AU  - V. N. Zhelyabin
TI  - Simple Special Jordan Superalgebras with Associative Nil-Semisimple Even Part
JO  - Algebra i logika
PY  - 2002
SP  - 276
EP  - 310
VL  - 41
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AL_2002_41_3_a1/
LA  - ru
ID  - AL_2002_41_3_a1
ER  - 
%0 Journal Article
%A V. N. Zhelyabin
%T Simple Special Jordan Superalgebras with Associative Nil-Semisimple Even Part
%J Algebra i logika
%D 2002
%P 276-310
%V 41
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AL_2002_41_3_a1/
%G ru
%F AL_2002_41_3_a1
V. N. Zhelyabin. Simple Special Jordan Superalgebras with Associative Nil-Semisimple Even Part. Algebra i logika, Tome 41 (2002) no. 3, pp. 276-310. http://geodesic.mathdoc.fr/item/AL_2002_41_3_a1/

[1] V. Kac, “Classification of simple $Z$-graded Lie superalgebras and simple Jordan superalgebras”, Commun. Algebra, 5:13 (1977), 1375–1400 | DOI | MR | Zbl

[2] M. Racine, E. Zelmanov, Classification of simple Jordan superalgebras with semisimple even part, preprint, 1998 | MR | Zbl

[3] D. King, K. McCrimon, “The Kantor construction of Jordan superalgebras”, Commun. Algebra, 20:1 (1992), 109–126 | DOI | MR | Zbl

[4] E. I. Zelmanov, I. P. Shestakov, “Pervichnye alternativnye superalgebry i nilpotentnost radikala svobodnoi alternativnoi algebry”, Izv. AN SSSR. Ser. matem., 54:4 (1990), 676–693 | MR

[5] I. P. Shestakov, “Pervichnye alternativnye superalgebry proizvolnoi kharakteristiki”, Algebra i logika, 36:6 (1997), 701–731 | MR

[6] I. P. Shestakov, “Prostye superalgebry tipa $(-1,1)$”, Algebra i logika, 37:6 (1998), 721–739 | MR | Zbl

[7] S. Gonzalez, M. C. Lopez-Diaz, C. Martinez, I. P. Shestakov, “Bernstein superalgebras and superbimodules”, J. Algebra, 212:1 (1999), 119–131 | DOI | MR | Zbl

[8] D. King, K. McCrimon, “The Kantor doubling process revisited”, Commun. Algebra, 23:1 (1995), 357–372 | DOI | MR | Zbl

[9] E. C. Posner, “Differentiable simple rings”, Proc. Am. Math. Soc., 11:3 (1960), 337–343 | DOI | MR | Zbl

[10] Shuen Yuan, “Differentiable simple rings of prime characteristic”, Duke Math. J., 31:4 (1964), 623–630 | DOI | MR

[11] H. Burbaki, Kommutativnaya algebra, M., 1971

[12] A. A. Suslin, “O strukture spetsialnoi lineinoi gruppy nad koltsami mnogochlenov”, Izv. AN SSSR. Ser. matem., 41:2 (1977), 235–252 | MR | Zbl

[13] I. Lambek, Koltsa i moduli, M., 1971