Model Theory for Hereditarily Finite Superstructures
Algebra i logika, Tome 41 (2002) no. 2, pp. 199-222.

Voir la notice de l'article provenant de la source Math-Net.Ru

We study model-theoretic properties of hereditarily finite superstructures over models of not more than countable signatures. A question is answered in the negative inquiring whether theories of hereditarily finite superstructures which have a unique (up to isomorphism) hereditarily finite superstructure can be described via definable functions. Yet theories for such superstructures admit a description in terms of iterated families $\mathcal{TF}$ and $\mathcal{SF}$. These are constructed using a definable union taken over countable ordinals in the subsets which are unions of finitely many complete subsets and of finite subsets, respectively. Simultaneously, we describe theories that share a unique (up to isomorphism) countable hereditarily finite superstructure.
Keywords: hereditarily finite superstructures, $\omega$-logic.
@article{AL_2002_41_2_a5,
     author = {V. G. Puzarenko},
     title = {Model {Theory} for {Hereditarily} {Finite} {Superstructures}},
     journal = {Algebra i logika},
     pages = {199--222},
     publisher = {mathdoc},
     volume = {41},
     number = {2},
     year = {2002},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/AL_2002_41_2_a5/}
}
TY  - JOUR
AU  - V. G. Puzarenko
TI  - Model Theory for Hereditarily Finite Superstructures
JO  - Algebra i logika
PY  - 2002
SP  - 199
EP  - 222
VL  - 41
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AL_2002_41_2_a5/
LA  - ru
ID  - AL_2002_41_2_a5
ER  - 
%0 Journal Article
%A V. G. Puzarenko
%T Model Theory for Hereditarily Finite Superstructures
%J Algebra i logika
%D 2002
%P 199-222
%V 41
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AL_2002_41_2_a5/
%G ru
%F AL_2002_41_2_a5
V. G. Puzarenko. Model Theory for Hereditarily Finite Superstructures. Algebra i logika, Tome 41 (2002) no. 2, pp. 199-222. http://geodesic.mathdoc.fr/item/AL_2002_41_2_a5/

[1] J. Barwise, Admissible sets and structures, Springer-Verlag, Berlin, 1975 | MR | Zbl

[2] S. Orey, “On $\omega$-consistency and related properties”, J. Symb. Log., 21 (1956), 246–252 | DOI | MR | Zbl

[3] L. Henkin, “A generalization of the concept of $\omega$-consistency”, J. Symb. Log., 19 (1954), 183–196 | DOI | MR | Zbl

[4] L. Henkin, “A generalization of the concept of $\omega$-completeness”, J. Symb. Log., 22:1 (1957), 1–14 | DOI | MR | Zbl

[5] Yu. L. Ershov, Opredelimost i vychislimost, Sibirskaya shkola algebry i logiki, Nauchnaya kniga, Novosibirsk, 1996 | MR | Zbl

[6] G. Keisler, Ch. Ch. Chen, Teoriya modelei, Mir, M., 1977 | MR

[7] Dzh. Barvais (red.), Spravochnaya kniga po matematicheskoi logike, ch. 1, Nauka, M., 1982

[8] Dzh. E. Saks, Teoriya nasyschennykh modelei, Mir, M., 1976 | MR

[9] V. G. Puzarenko, “O vychislimosti nad modelyami razreshimykh teorii”, Algebra i logika, 39:2 (2000), 170–197 | MR | Zbl