Recognition of Finite Simple Groups $S_4(q)$ by Their Element Orders
Algebra i logika, Tome 41 (2002) no. 2, pp. 166-198

Voir la notice de l'article provenant de la source Math-Net.Ru

It is proved that among simple groups $S_4(q)$ in the class of finite groups, only the groups $S_4(3^n)$, where $n$ is an odd number greater than unity, are recognizable by a set of their element orders. It is also shown that simple groups $U_3(9)$, ${^3D}_4(2)$, $G_2(4)$, $S_6(3)$, $F_4(2)$, and ${^2E}_6(2)$ are recognizable, but $L_3(3)$ is not.
Keywords: finite simple groups, recognizability of groups by their element orders.
@article{AL_2002_41_2_a4,
     author = {V. D. Mazurov},
     title = {Recognition of {Finite} {Simple} {Groups~}$S_4(q)$ by {Their} {Element} {Orders}},
     journal = {Algebra i logika},
     pages = {166--198},
     publisher = {mathdoc},
     volume = {41},
     number = {2},
     year = {2002},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/AL_2002_41_2_a4/}
}
TY  - JOUR
AU  - V. D. Mazurov
TI  - Recognition of Finite Simple Groups $S_4(q)$ by Their Element Orders
JO  - Algebra i logika
PY  - 2002
SP  - 166
EP  - 198
VL  - 41
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AL_2002_41_2_a4/
LA  - ru
ID  - AL_2002_41_2_a4
ER  - 
%0 Journal Article
%A V. D. Mazurov
%T Recognition of Finite Simple Groups $S_4(q)$ by Their Element Orders
%J Algebra i logika
%D 2002
%P 166-198
%V 41
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AL_2002_41_2_a4/
%G ru
%F AL_2002_41_2_a4
V. D. Mazurov. Recognition of Finite Simple Groups $S_4(q)$ by Their Element Orders. Algebra i logika, Tome 41 (2002) no. 2, pp. 166-198. http://geodesic.mathdoc.fr/item/AL_2002_41_2_a4/