Recognition of Finite Simple Groups~$S_4(q)$ by Their Element Orders
Algebra i logika, Tome 41 (2002) no. 2, pp. 166-198.

Voir la notice de l'article provenant de la source Math-Net.Ru

It is proved that among simple groups $S_4(q)$ in the class of finite groups, only the groups $S_4(3^n)$, where $n$ is an odd number greater than unity, are recognizable by a set of their element orders. It is also shown that simple groups $U_3(9)$, ${^3D}_4(2)$, $G_2(4)$, $S_6(3)$, $F_4(2)$, and ${^2E}_6(2)$ are recognizable, but $L_3(3)$ is not.
Keywords: finite simple groups, recognizability of groups by their element orders.
@article{AL_2002_41_2_a4,
     author = {V. D. Mazurov},
     title = {Recognition of {Finite} {Simple} {Groups~}$S_4(q)$ by {Their} {Element} {Orders}},
     journal = {Algebra i logika},
     pages = {166--198},
     publisher = {mathdoc},
     volume = {41},
     number = {2},
     year = {2002},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/AL_2002_41_2_a4/}
}
TY  - JOUR
AU  - V. D. Mazurov
TI  - Recognition of Finite Simple Groups~$S_4(q)$ by Their Element Orders
JO  - Algebra i logika
PY  - 2002
SP  - 166
EP  - 198
VL  - 41
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AL_2002_41_2_a4/
LA  - ru
ID  - AL_2002_41_2_a4
ER  - 
%0 Journal Article
%A V. D. Mazurov
%T Recognition of Finite Simple Groups~$S_4(q)$ by Their Element Orders
%J Algebra i logika
%D 2002
%P 166-198
%V 41
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AL_2002_41_2_a4/
%G ru
%F AL_2002_41_2_a4
V. D. Mazurov. Recognition of Finite Simple Groups~$S_4(q)$ by Their Element Orders. Algebra i logika, Tome 41 (2002) no. 2, pp. 166-198. http://geodesic.mathdoc.fr/item/AL_2002_41_2_a4/

[1] V. D. Mazurov, M. Ch. Su, X. P. Chao, “Raspoznavanie konechnykh prostykh grupp $L_3(2^m)$ i $U_3(2^m)$ po poryadkam ikh elementov”, Algebra i logika, 39:5 (2000), 567–585 | MR | Zbl

[2] J. S. Williams, “Prime graph components of finite groups”, J. Algebra, 69:2 (1981), 487–513 | DOI | MR | Zbl

[3] A. S. Kondratev, V. D. Mazurov, “Raspoznavanie znakoperemennykh grupp prostoi stepeni po poryadkam ikh elementov”, Sib. matem. zh., 41:2 (2000), 359–369 | MR | Zbl

[4] J. G. Thompson, “Normal $p$-complements for finite groups”, Math. Z., 72:2 (1960), 332–354 | MR | Zbl

[5] H. Zassenhaus, “Kennzeichnung endlicher linearen Gruppen als Permutationsgruppen”, Abh. Math. Semin. Univ. Hamb., 11 (1936), 17–40 | DOI

[6] H. Zassenhaus, “Über endliche Fastkörper”, Abh. Math. Semin. Univ. Hamb., 11 (1936), 187–220 | DOI

[7] V. D. Mazurov, “Kharakterizatsii konechnykh grupp mnozhestvami poryadkov ikh elementov”, Algebra i logika, 36:1 (1997), 37–53 | MR | Zbl

[8] K. Zsigmondy, “Zur Theorie der Potenzreste”, Monatsh. Math. Phys., 3 (1892), 265–284 | DOI | MR

[9] C. Jansen, K. Lux, R. Parker, R. Wilson, An Atlas of Brauer characters, Clarendon Press, Oxford, 1995 | MR | Zbl

[10] R. Brauer, C. Nesbitt, “On the modular representations of groups of finite order. I”, Univ. Toronto Stud., 4, Univ. Toronto Press, Toronto, 1937

[11] B. Srinivasan, “The characters of the finite symplectic group $Sp(4,q)$”, Trans. Am. Math. Soc., 131:2 (1968), 488–525 | DOI | MR | Zbl

[12] P. Kleidman, M. Liebeck, “The subgroup structure of the finite classical groups”, London Math. Soc. Lect., 129, Cambridge University Press, Cambridge, 1990 | MR | Zbl

[13] E. I. Khukhro, “Nilpotent groups and their automorphisms”, de Gruyter Expo. Math., 8, Walter de Gruyter, Berlin, 1993 | MR | Zbl

[14] J. H. Conway, R. T. Curtis, S. P. Norton, R. A. Parker, R. A. Wilson, Atlas of finite groups, Clarendon Press, Oxford, 1985 | MR | Zbl

[15] A. E. Zalesskii, “Minimal polynomials and eigenvalues of $p$-elements in representations of quasi-simple groups with a cyclic Sylow $p$-subgroup”, J. Lond. Math. Soc., 59:3 (1999), 845–866 | DOI | MR | Zbl

[16] A. V. Vasilev, “Raspoznavaemost grupp $G_2(3^n)$ po poryadkam ikh elementov”, Algebra i logika, 41:2 (2002), 130–142 | MR | Zbl

[17] M. R. Darafsheh, A. R. Moghaddamfar, “A characterization of some finite groups by their element orders”, Algebra Colloq., 7:4 (2000), 467–476 | MR | Zbl