Friedberg Numberings of Families of $n$-Computably Enumerable Sets
Algebra i logika, Tome 41 (2002) no. 2, pp. 143-154

Voir la notice de l'article provenant de la source Math-Net.Ru

We establish a number of results on numberings, in particular, on Friedberg numberings, of families of d.c.e. sets. First, it is proved that there exists a Friedberg numbering of the family of all d.c.e. sets. We also show that this result, patterned on Friedberg's famous theorem for the family of all c.e. sets, holds for the family of all $n$-c.e. sets for any $n>2$. Second, it is stated that there exists an infinite family of d. c. e. sets without a Friedberg numbering. Third, it is shown that there exists an infinite family of c. e. sets (treated as a family of d. c. e. sets) with a numbering which is unique up to equivalence. Fourth, it is proved that there exists a family of d. c. e. sets with a least numbering (under reducibility) which is Friedberg but is not the only numbering (modulo reducibility).
@article{AL_2002_41_2_a2,
     author = {S. S. Goncharov and S. Lempp and R. Solomon},
     title = {Friedberg {Numberings} of {Families} of $n${-Computably} {Enumerable} {Sets}},
     journal = {Algebra i logika},
     pages = {143--154},
     publisher = {mathdoc},
     volume = {41},
     number = {2},
     year = {2002},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/AL_2002_41_2_a2/}
}
TY  - JOUR
AU  - S. S. Goncharov
AU  - S. Lempp
AU  - R. Solomon
TI  - Friedberg Numberings of Families of $n$-Computably Enumerable Sets
JO  - Algebra i logika
PY  - 2002
SP  - 143
EP  - 154
VL  - 41
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AL_2002_41_2_a2/
LA  - ru
ID  - AL_2002_41_2_a2
ER  - 
%0 Journal Article
%A S. S. Goncharov
%A S. Lempp
%A R. Solomon
%T Friedberg Numberings of Families of $n$-Computably Enumerable Sets
%J Algebra i logika
%D 2002
%P 143-154
%V 41
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AL_2002_41_2_a2/
%G ru
%F AL_2002_41_2_a2
S. S. Goncharov; S. Lempp; R. Solomon. Friedberg Numberings of Families of $n$-Computably Enumerable Sets. Algebra i logika, Tome 41 (2002) no. 2, pp. 143-154. http://geodesic.mathdoc.fr/item/AL_2002_41_2_a2/