Recognizing Groups $G_2(3^n)$ by Their Element Orders
Algebra i logika, Tome 41 (2002) no. 2, pp. 130-142
Voir la notice de l'article provenant de la source Math-Net.Ru
It is proved that a finite group that is isomorphic to a simple non-Abelian group $G=G_2(3^n)$ is, up to isomorphism, recognized by a set $\omega(G)$ of its element orders, that is, $H \simeq G$ if $\omega(H)=\omega(G)$ for some finite group $H$.
Keywords:
finite group, recognizability of groups by their element orders.
Mots-clés : simple non-Abelian group
Mots-clés : simple non-Abelian group
@article{AL_2002_41_2_a1,
author = {A. V. Vasil'ev},
title = {Recognizing {Groups} $G_2(3^n)$ by {Their} {Element} {Orders}},
journal = {Algebra i logika},
pages = {130--142},
publisher = {mathdoc},
volume = {41},
number = {2},
year = {2002},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/AL_2002_41_2_a1/}
}
A. V. Vasil'ev. Recognizing Groups $G_2(3^n)$ by Their Element Orders. Algebra i logika, Tome 41 (2002) no. 2, pp. 130-142. http://geodesic.mathdoc.fr/item/AL_2002_41_2_a1/