Recognizing Groups $G_2(3^n)$ by Their Element Orders
Algebra i logika, Tome 41 (2002) no. 2, pp. 130-142.

Voir la notice de l'article provenant de la source Math-Net.Ru

It is proved that a finite group that is isomorphic to a simple non-Abelian group $G=G_2(3^n)$ is, up to isomorphism, recognized by a set $\omega(G)$ of its element orders, that is, $H \simeq G$ if $\omega(H)=\omega(G)$ for some finite group $H$.
Keywords: finite group, recognizability of groups by their element orders.
Mots-clés : simple non-Abelian group
@article{AL_2002_41_2_a1,
     author = {A. V. Vasil'ev},
     title = {Recognizing {Groups} $G_2(3^n)$ by {Their} {Element} {Orders}},
     journal = {Algebra i logika},
     pages = {130--142},
     publisher = {mathdoc},
     volume = {41},
     number = {2},
     year = {2002},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/AL_2002_41_2_a1/}
}
TY  - JOUR
AU  - A. V. Vasil'ev
TI  - Recognizing Groups $G_2(3^n)$ by Their Element Orders
JO  - Algebra i logika
PY  - 2002
SP  - 130
EP  - 142
VL  - 41
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AL_2002_41_2_a1/
LA  - ru
ID  - AL_2002_41_2_a1
ER  - 
%0 Journal Article
%A A. V. Vasil'ev
%T Recognizing Groups $G_2(3^n)$ by Their Element Orders
%J Algebra i logika
%D 2002
%P 130-142
%V 41
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AL_2002_41_2_a1/
%G ru
%F AL_2002_41_2_a1
A. V. Vasil'ev. Recognizing Groups $G_2(3^n)$ by Their Element Orders. Algebra i logika, Tome 41 (2002) no. 2, pp. 130-142. http://geodesic.mathdoc.fr/item/AL_2002_41_2_a1/

[1] V. D. Mazurov, “O mnozhestve poryadkov elementov konechnoi gruppy”, Algebra i logika, 33:1 (1994), 81–89 | MR | Zbl

[2] W. Shi, “A characteristic property of $A_5$”, J. Southwest-China Teachers Univ., 3 (1986), 11–14 | MR

[3] W. Shi, “A characteristic property of $PSL_2(7)$”, J. Aust. Math. Soc.(A), 36:3 (1984), 354–356 | DOI | MR | Zbl

[4] W. Shi, “A characterization of some projective special linear groups”, J. Math. (Wuhan), 5:2 (1985), 191–200 | MR | Zbl

[5] W. Shi, “A characteristic property of $J_1$ and $PSL_2(2^n)$”, Adv. Math. (PRC), 16 (1987), 397–401 | Zbl

[6] R. Brandl, W. Shi, “The characterization of $PSL(2,q)$ by its element orders”, J. Algebra, 163:1 (1994), 109–114 | DOI | MR | Zbl

[7] V. D. Mazurov, M. Ch. Cy, X. P. Chao, “Raspoznavanie konechnykh prostykh grupp $L_3(2^m)$ i $U_3(2^m)$ po poryadkam ikh elementov”, Algebra i logika, 39:5 (2000), 567–585 | MR | Zbl

[8] W. Shi, “A characterization of Suzuki simple groups”, Proc. Am. Math. Soc., 114:3 (1992), 589–591 | DOI | MR | Zbl

[9] R. Brandl, W. Shi, “A characterization of finite simple groups with abelian Sylow 2-subgroups”, Ric. Mat., 42:1 (1993), 193–198 | MR | Zbl

[10] H. W. Deng, W. J. Shi, “The characterization of Ree groups $^2F_4(q)$ by their element orders”, J. Algebra, 217:1 (1999), 180–187 | DOI | MR | Zbl

[11] A. S. Kondratev, V. D. Mazurov, “Raspoznavanie znakoperemennykh grupp prostoi stepeni po poryadkam ikh elementov”, Sib. matem. zh., 41:2 (2000), 359–369 | MR | Zbl

[12] A. V. Zavarnitsin, Raspoznavanie po mnozhestvu poryadkov elementov znakoperemennykh grupp stepeni $r+1$ i $r+2$ dlya prostogo $r$, preprint No 47, IDMI, Novosibirsk, 2000

[13] S. Lipschutz, W. Shi, “Finite groups whose element orders do not exceed twenty”, Prog. Nat. Sci., 10:1 (2000), 11–21 | MR

[14] J. S. Williams, “Prime graph components of finite groups”, J. Algebra, 69:2 (1981), 487–513 | DOI | MR | Zbl

[15] A. S. Kondratev, “O komponentakh grafa prostykh chisel dlya konechnykh prostykh grupp”, Mat. sbornik, 180:6 (1989), 787–797

[16] V. D. Mazurov, “Raspoznavanie konechnykh grupp po mnozhestvu poryadkov ikh elementov”, Algebra i logika, 37:6 (1998), 651–666 | MR | Zbl

[17] R. Steinberg, Lektsii o gruppakh Shevalle, Mir, M., 1975 | MR | Zbl

[18] L. W. Carter, Simple groups of Lie type, Wiley, London, 1972 | MR | Zbl

[19] A. V. Vasilev, “Minimalnye podstanovochnye predstavleniya konechnykh prostykh isklyuchitelnykh grupp tipa $G_2$ i $F_4$”, Algebra i logika, 35:6 (1996), 663–684 | MR

[20] Seminar po algebraicheskim gruppam, Mir, M., 1973 | MR

[21] J. G. Thompson, “Normal $p$-complements for finite groups”, Math Z., 72:2 (1960), 332–354 | MR | Zbl

[22] J. H. Conway, R. T. Curtis, S. P. Norton, R. A. Parker, R. A. Wilson, Atlas of finite groups, Clarendon Press, Oxford, 1985 | MR | Zbl

[23] A. V. Zavarnitsin, V. D. Mazurov, “O poryadkakh elementov v nakrytiyakh simmetricheskikh i znakoperemennykh grupp”, Algebra i logika, 38:3 (1999), 296–315 | MR