Recognizing Groups $G_2(3^n)$ by Their Element Orders
Algebra i logika, Tome 41 (2002) no. 2, pp. 130-142

Voir la notice de l'article provenant de la source Math-Net.Ru

It is proved that a finite group that is isomorphic to a simple non-Abelian group $G=G_2(3^n)$ is, up to isomorphism, recognized by a set $\omega(G)$ of its element orders, that is, $H \simeq G$ if $\omega(H)=\omega(G)$ for some finite group $H$.
Keywords: finite group, recognizability of groups by their element orders.
Mots-clés : simple non-Abelian group
@article{AL_2002_41_2_a1,
     author = {A. V. Vasil'ev},
     title = {Recognizing {Groups} $G_2(3^n)$ by {Their} {Element} {Orders}},
     journal = {Algebra i logika},
     pages = {130--142},
     publisher = {mathdoc},
     volume = {41},
     number = {2},
     year = {2002},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/AL_2002_41_2_a1/}
}
TY  - JOUR
AU  - A. V. Vasil'ev
TI  - Recognizing Groups $G_2(3^n)$ by Their Element Orders
JO  - Algebra i logika
PY  - 2002
SP  - 130
EP  - 142
VL  - 41
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AL_2002_41_2_a1/
LA  - ru
ID  - AL_2002_41_2_a1
ER  - 
%0 Journal Article
%A A. V. Vasil'ev
%T Recognizing Groups $G_2(3^n)$ by Their Element Orders
%J Algebra i logika
%D 2002
%P 130-142
%V 41
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AL_2002_41_2_a1/
%G ru
%F AL_2002_41_2_a1
A. V. Vasil'ev. Recognizing Groups $G_2(3^n)$ by Their Element Orders. Algebra i logika, Tome 41 (2002) no. 2, pp. 130-142. http://geodesic.mathdoc.fr/item/AL_2002_41_2_a1/