Functions on Linear Spaces Associated with Finite Projective Planes
Algebra i logika, Tome 41 (2002) no. 1, pp. 83-103.

Voir la notice de l'article provenant de la source Math-Net.Ru

Using spread sets that define finite translation planes, we construct functions that map a finite linear space into itself. Properties of such functions, which are of interest from the standpoint of cryptography, are examined. We look into the relationship between these functions and corresponding translation planes.
Keywords: linear space over a finite field, spread set of linear transformations, function on a linear space.
@article{AL_2002_41_1_a4,
     author = {N. D. Podufalov},
     title = {Functions on {Linear} {Spaces} {Associated} with {Finite} {Projective} {Planes}},
     journal = {Algebra i logika},
     pages = {83--103},
     publisher = {mathdoc},
     volume = {41},
     number = {1},
     year = {2002},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/AL_2002_41_1_a4/}
}
TY  - JOUR
AU  - N. D. Podufalov
TI  - Functions on Linear Spaces Associated with Finite Projective Planes
JO  - Algebra i logika
PY  - 2002
SP  - 83
EP  - 103
VL  - 41
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AL_2002_41_1_a4/
LA  - ru
ID  - AL_2002_41_1_a4
ER  - 
%0 Journal Article
%A N. D. Podufalov
%T Functions on Linear Spaces Associated with Finite Projective Planes
%J Algebra i logika
%D 2002
%P 83-103
%V 41
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AL_2002_41_1_a4/
%G ru
%F AL_2002_41_1_a4
N. D. Podufalov. Functions on Linear Spaces Associated with Finite Projective Planes. Algebra i logika, Tome 41 (2002) no. 1, pp. 83-103. http://geodesic.mathdoc.fr/item/AL_2002_41_1_a4/

[1] N. D. Podufalov, “O regulyarnykh mnozhestvakh i kollineatsiyakh proektivnykh ploskostei”, Algebra i logika, 30:1 (1991), 333–334 | MR

[2] M. Kholl, Teoriya grupp, Inostr. lit-ra, M., 1962

[3] O. A. Logachev, A. A. Salnikov, V. V. Yaschenko, “Nekotorye kharakteristiki “nelineinosti” gruppovykh otobrazhenii” (to appear)

[4] H. Dobbertin, “Almost perfect nonlinear power functions on $GF(2^n)$: The Welch case”, IEEE Trans. Inf. Theory, 45:4 (1999), 1271–1275 | DOI | MR | Zbl

[5] P. Dembowski, Finite geometries, Springer-Verlag, Berlin, 1968 | MR

[6] N. D. Podufalov, B. K. Durakov, O. V. Kravtsova, E. B. Durakov, O polupolevykh ploskostyakh poryadka $q^4$, Dep. v VINITI 14.10.96, No 3005-V96

[7] M. Biliotti, V. Jha, N. L. Johnson, G. Menichetti, “A structure theory for translation planes of order $q^2$ that admit collineation group of order $q^2$”, Geom. Dedicata, 29 (1989), 7–43 | DOI | MR | Zbl