Voir la notice de l'article provenant de la source Math-Net.Ru
@article{AL_2002_41_1_a4, author = {N. D. Podufalov}, title = {Functions on {Linear} {Spaces} {Associated} with {Finite} {Projective} {Planes}}, journal = {Algebra i logika}, pages = {83--103}, publisher = {mathdoc}, volume = {41}, number = {1}, year = {2002}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/AL_2002_41_1_a4/} }
N. D. Podufalov. Functions on Linear Spaces Associated with Finite Projective Planes. Algebra i logika, Tome 41 (2002) no. 1, pp. 83-103. http://geodesic.mathdoc.fr/item/AL_2002_41_1_a4/
[1] N. D. Podufalov, “O regulyarnykh mnozhestvakh i kollineatsiyakh proektivnykh ploskostei”, Algebra i logika, 30:1 (1991), 333–334 | MR
[2] M. Kholl, Teoriya grupp, Inostr. lit-ra, M., 1962
[3] O. A. Logachev, A. A. Salnikov, V. V. Yaschenko, “Nekotorye kharakteristiki “nelineinosti” gruppovykh otobrazhenii” (to appear)
[4] H. Dobbertin, “Almost perfect nonlinear power functions on $GF(2^n)$: The Welch case”, IEEE Trans. Inf. Theory, 45:4 (1999), 1271–1275 | DOI | MR | Zbl
[5] P. Dembowski, Finite geometries, Springer-Verlag, Berlin, 1968 | MR
[6] N. D. Podufalov, B. K. Durakov, O. V. Kravtsova, E. B. Durakov, O polupolevykh ploskostyakh poryadka $q^4$, Dep. v VINITI 14.10.96, No 3005-V96
[7] M. Biliotti, V. Jha, N. L. Johnson, G. Menichetti, “A structure theory for translation planes of order $q^2$ that admit collineation group of order $q^2$”, Geom. Dedicata, 29 (1989), 7–43 | DOI | MR | Zbl