The Number of Isomorphism Classes of Finite Groups with Given Element Orders
Algebra i logika, Tome 41 (2002) no. 1, pp. 70-82

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $G$ be a finite group and $\pi_e(G)$ the set of element orders of $G$. Denote by $h(\pi_e(G))$ the number of isomorphism classes of finite groups $H$ satisfying $\pi_e(H)=\pi_e(G)$. We prove that if $G$ has at least three prime graph components, then $h(\pi_e(G))\in\{1, \infty\}$.
Keywords: finite group, set of element orders of a group, prime graph.
@article{AL_2002_41_1_a3,
     author = {H. Deng and M. S. Lucido and W. Shi},
     title = {The {Number} of {Isomorphism} {Classes} of {Finite} {Groups} with {Given} {Element} {Orders}},
     journal = {Algebra i logika},
     pages = {70--82},
     publisher = {mathdoc},
     volume = {41},
     number = {1},
     year = {2002},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/AL_2002_41_1_a3/}
}
TY  - JOUR
AU  - H. Deng
AU  - M. S. Lucido
AU  - W. Shi
TI  - The Number of Isomorphism Classes of Finite Groups with Given Element Orders
JO  - Algebra i logika
PY  - 2002
SP  - 70
EP  - 82
VL  - 41
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AL_2002_41_1_a3/
LA  - ru
ID  - AL_2002_41_1_a3
ER  - 
%0 Journal Article
%A H. Deng
%A M. S. Lucido
%A W. Shi
%T The Number of Isomorphism Classes of Finite Groups with Given Element Orders
%J Algebra i logika
%D 2002
%P 70-82
%V 41
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AL_2002_41_1_a3/
%G ru
%F AL_2002_41_1_a3
H. Deng; M. S. Lucido; W. Shi. The Number of Isomorphism Classes of Finite Groups with Given Element Orders. Algebra i logika, Tome 41 (2002) no. 1, pp. 70-82. http://geodesic.mathdoc.fr/item/AL_2002_41_1_a3/