The Number of Isomorphism Classes of Finite Groups with Given Element Orders
Algebra i logika, Tome 41 (2002) no. 1, pp. 70-82.

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $G$ be a finite group and $\pi_e(G)$ the set of element orders of $G$. Denote by $h(\pi_e(G))$ the number of isomorphism classes of finite groups $H$ satisfying $\pi_e(H)=\pi_e(G)$. We prove that if $G$ has at least three prime graph components, then $h(\pi_e(G))\in\{1, \infty\}$.
Keywords: finite group, set of element orders of a group, prime graph.
@article{AL_2002_41_1_a3,
     author = {H. Deng and M. S. Lucido and W. Shi},
     title = {The {Number} of {Isomorphism} {Classes} of {Finite} {Groups} with {Given} {Element} {Orders}},
     journal = {Algebra i logika},
     pages = {70--82},
     publisher = {mathdoc},
     volume = {41},
     number = {1},
     year = {2002},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/AL_2002_41_1_a3/}
}
TY  - JOUR
AU  - H. Deng
AU  - M. S. Lucido
AU  - W. Shi
TI  - The Number of Isomorphism Classes of Finite Groups with Given Element Orders
JO  - Algebra i logika
PY  - 2002
SP  - 70
EP  - 82
VL  - 41
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AL_2002_41_1_a3/
LA  - ru
ID  - AL_2002_41_1_a3
ER  - 
%0 Journal Article
%A H. Deng
%A M. S. Lucido
%A W. Shi
%T The Number of Isomorphism Classes of Finite Groups with Given Element Orders
%J Algebra i logika
%D 2002
%P 70-82
%V 41
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AL_2002_41_1_a3/
%G ru
%F AL_2002_41_1_a3
H. Deng; M. S. Lucido; W. Shi. The Number of Isomorphism Classes of Finite Groups with Given Element Orders. Algebra i logika, Tome 41 (2002) no. 1, pp. 70-82. http://geodesic.mathdoc.fr/item/AL_2002_41_1_a3/

[1] Nereshennye voprosy teorii grupp. Kourovskaya tetrad, izd. 13-e, Novosibirsk, 1995

[2] J. S. Williams, “Prime graph components of finite groups”, J. Algebra, 69:2 (1981), 487–513 | DOI | MR | Zbl

[3] N. Chigira, W. Shi, “More on the set of element orders of finite groups”, Northeast Math. J., 12:3 (1996), 257–260 | MR | Zbl

[4] V. D. Mazurov, “O mnozhestve poryadkov elementov konechnoi gruppy”, Algebra i logika, 33:1 (1994), 81–89 | MR | Zbl

[5] V. D. Mazurov, “Raspoznavanie konechnykh neprostykh grupp po mnozhestvu poryadkov ikh elementov”, Algebra i logika, 36:3 (1997), 304–322 | MR | Zbl

[6] W. Shi, C. Y. Tang, “A characterization of some orthogonal groups”, Prog. Nat. Sci., 7:2 (1997), 155–162 | MR | Zbl

[7] W. Shi, “Groups whose elements have given orders”, Chin. Sci. Bull., 42:21 (1997), 1761–1764 | DOI | MR | Zbl

[8] J. H. Conway, R. T. Curtis, S. P. Norton, R. A. Parker, R. A. Wilson, Atlas of finite groups, Clarendon Press, Oxford, 1985 | MR | Zbl

[9] D. I. Deriziotis, “The centralizers of semisipie elements of the Chevalley groups $E_7$ and $E_8$”, Tokyo J. Math., 6:1 (1983), 191–216 | MR | Zbl

[10] D. I. Deriziotis, A. P. Fakiolas, “The maximal tori in the finite Chevalley groups of type $E_6$, $E_7$ and $E_8$”, Commun. Algebra, 19:3 (1991), 889–903 | DOI | MR | Zbl

[11] W. Feit, G. M. Seitz, “On finite rational groups and related topics”, Ill. J. Math., 33:1 (1989), 103–131 | MR | Zbl

[12] P. B. Kleidman, “The maximal subgroups of the Chevalley groups $G_2(q)$ with $q$ odd, of the Ree groups $^2G_2(q)$, and of their automorphism groups”, J. Algebra,, 117:1 (1988), 30–71 | DOI | MR | Zbl

[13] G. Malle, “The maximal subgroups of $^2F_4(q^2)$”, J. Algebra, 139 (1991), 52–69 | DOI | MR | Zbl

[14] K. Mizuno, “The conjugate classes of unipotent elements of the Chevalley groups $E_7$ and $E_8$”, Tokyo J. Math., 3:2 (1980), 391–459 | MR | Zbl

[15] G. M. Seitz, “On the subgroup structure of classical”, Commun. Algebra, 10:8 (1982), 875–885 | DOI | MR | Zbl

[16] K. Shinoda, “The conjugacy classes of Chevalley groups of type $(F_4)$ over finite fields of characteristic 2”, J. Fac. Sci., Univ. Tokyo, Sect. IA, 21 (1974), 133–159 | MR | Zbl

[17] M. Suzuki, “On class of double transitive groups”, Ann. Math. (2), 75:1 (1962), 105–145 | DOI | MR | Zbl

[18] N. Iiory, H. Yamaki, “Prime graph components of the simple groups of Lie type over the field of even characteristic”, J. Algebra, 155 (1993), 335–343 | DOI | MR

[19] M. S. Lucido, “Prime graph components of finite almost simple groups”, Rend. Semin. Mat. Univ. Padova, 102 (1999), 1–22 | MR | Zbl

[20] H. Enomoto, “The conjugacy classes of Chevalley groups of type $G_2$ over finite fields of characteristic $2$ or $3$”, J. Fac. Sci. Univ. Tokyo Sect. I, 16 (1970), 497–512 | MR | Zbl

[21] D. Gorenstein, R. Lyons, “The local structure of finite groups of characteristic $2$ type”, Mem. Am. Math. Soc., 42:276 (1983) | MR

[22] H. W. Deng, W. J. Shi, “The characterization of Ree groups $^2F_4(q)$ by their element orders”, J. Algebra, 217:1 (1999), 180–187 | DOI | MR | Zbl

[23] R. Brandl, W. Shi, “A characterization of finite simple groups with abelian Sylow 2-subgroups”, Ric. Mat., 42:1 (1993), 193–198 | MR | Zbl

[24] W. Shi, “The characterization of the sporadic simple groups by their element orders”, Algebra Colloq., 1:2 (1994), 159–166 | MR | Zbl

[25] W. Shi, “A characterization of some projective special linear groups”, J. Math. Wuhan Univ., 5 (1985), 191–200 | MR | Zbl

[26] W. Shi, “A characterization of Suzuki simple groups”, Proc. Am. Math. Soc., 114:3 (1992), 589–591 | DOI | MR | Zbl

[27] W. Shi, W. Yang, “A new characterization of $A_5$ and the finite groups in which every non-identity element has prime order”, J. Southwest. Chin. Teachers College, 9 (1984), 36–40, (China)

[28] C. E. Praeger, W. Shi, “A characterization of some alternating and symmetric groups”, Commun. Algebra, 22:5 (1994), 1507–1503 | DOI | MR

[29] W. Shi, “A characterization of the finite simple group $U_4(3)$”, An. Uni. Timişoara Ser. Ştiinţ. Mat., 30:2–3 (1992), 319–323 | MR | Zbl

[30] W. Shi, H. L. Li, “A characteristic property of $M_{12}$ and $PSU(6,2)$”, Acta Math. Sin., 32:6 (1989), 758–764, (China) | MR | Zbl

[31] R. Brandl, W. Shi, “The characterization of $PSL(2,q)$ by its element orders”, J. Algebra, 163:1 (1994), 109–114 | DOI | MR | Zbl

[32] W. Shi, “A characteristic property of $J_1$ and $PSL_2(2^n)$”, Adv. Math., 16 (1987), 397–401 | Zbl