The Number of Isomorphism Classes of Finite Groups with Given Element Orders
Algebra i logika, Tome 41 (2002) no. 1, pp. 70-82
Voir la notice de l'article provenant de la source Math-Net.Ru
Let $G$ be a finite group and $\pi_e(G)$ the set of element orders of $G$. Denote by $h(\pi_e(G))$ the number of isomorphism classes of finite groups $H$ satisfying $\pi_e(H)=\pi_e(G)$. We prove that if $G$ has at least three prime graph components, then $h(\pi_e(G))\in\{1, \infty\}$.
Keywords:
finite group, set of element orders of a group, prime graph.
@article{AL_2002_41_1_a3,
author = {H. Deng and M. S. Lucido and W. Shi},
title = {The {Number} of {Isomorphism} {Classes} of {Finite} {Groups} with {Given} {Element} {Orders}},
journal = {Algebra i logika},
pages = {70--82},
publisher = {mathdoc},
volume = {41},
number = {1},
year = {2002},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/AL_2002_41_1_a3/}
}
H. Deng; M. S. Lucido; W. Shi. The Number of Isomorphism Classes of Finite Groups with Given Element Orders. Algebra i logika, Tome 41 (2002) no. 1, pp. 70-82. http://geodesic.mathdoc.fr/item/AL_2002_41_1_a3/