Hall subgroups of odd order in finite groups
Algebra i logika, Tome 41 (2002) no. 1, pp. 15-56.

Voir la notice de l'article provenant de la source Math-Net.Ru

We complete the description of Hall subgroups of odd order in finite simple groups initiated by F.Gross, and as a consequence, bring to a close the study of odd order Hall subgroups in all finite groups modulo classification of finite simple groups. In addition, it is proved that for every set $\pi$ of primes, an extension of an arbitrary $D_\pi$-group by a $D_\pi$-group is again a $D_\pi$-group. This result gives a partial answer to Question 3.62 posed by L. A. Shemetkov in the “Kourovka Notebook”.
Keywords: finite simple group, Hall subgroup, exceptional groups of Lie type.
@article{AL_2002_41_1_a1,
     author = {E. P. Vdovin and D. O. Revin},
     title = {Hall subgroups of odd order in finite groups},
     journal = {Algebra i logika},
     pages = {15--56},
     publisher = {mathdoc},
     volume = {41},
     number = {1},
     year = {2002},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/AL_2002_41_1_a1/}
}
TY  - JOUR
AU  - E. P. Vdovin
AU  - D. O. Revin
TI  - Hall subgroups of odd order in finite groups
JO  - Algebra i logika
PY  - 2002
SP  - 15
EP  - 56
VL  - 41
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AL_2002_41_1_a1/
LA  - ru
ID  - AL_2002_41_1_a1
ER  - 
%0 Journal Article
%A E. P. Vdovin
%A D. O. Revin
%T Hall subgroups of odd order in finite groups
%J Algebra i logika
%D 2002
%P 15-56
%V 41
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AL_2002_41_1_a1/
%G ru
%F AL_2002_41_1_a1
E. P. Vdovin; D. O. Revin. Hall subgroups of odd order in finite groups. Algebra i logika, Tome 41 (2002) no. 1, pp. 15-56. http://geodesic.mathdoc.fr/item/AL_2002_41_1_a1/

[1] A. S. Kondratev, “Podgruppy konechnykh grupp Shevalle”, Uspekhi matem. nauk, 41:1(247) (1986), 57–96 | MR

[2] Nereshennye voprosy teorii grupp. Kourovskaya tetrad, 14-e izd., In-t matem. SO RAN, Novosibirsk, 1999 | MR

[3] P. Hall, “Theorems like Sylow's”, Proc. Lond. Math. Soc.(3), 6:22 (1956), 286–304 | DOI | MR | Zbl

[4] J. G. Thompson, “Hall subgroups of the symmetric groups”, J. Comb. Theory(A), 1966, no. 1, 271–279 | DOI | MR | Zbl

[5] F. Gross, “On a conjecture of Philip Hail”, Proc. Lond. Math. Soc.(3), 52:3 (1986), 464–494 | DOI | MR | Zbl

[6] F. Gross, “Hall subgroups of order not divisible by 3”, Rocky Mountain J. Math., 23:2 (1993), 569–591 | DOI | MR | Zbl

[7] D. O. Revin, “Khollovy $\pi$-podgruppy konechnykh grupp Shevalle, kharakteristika kotorykh prinadlezhit $\pi$”, Matem. trudy, 2:1 (1999), 160–208 | MR | Zbl

[8] D. O. Revin, Dve $D_\pi$-teoremy dlya odnogo klassa konechnykh grupp, preprint No 40 NIIDM, Novosibirsk, 1999

[9] F. Gross, “Odd order Hall subgroups of the classical linear groups”, Math. Z., 220:3 (1995), 317–336 | DOI | MR | Zbl

[10] F. Gross, “Conjugacy of odd order Hall subgroups”, Bull. Lond. Math. Soc., 19:4 (1987), 311–319 | DOI | MR | Zbl

[11] M. I. Kargapolov, Yu. Ya. Merzlyakov, Osnovy teorii grupp, Nauka, Moskva, 1996 | MR | Zbl

[12] R. W. Carter, Simple Groups of Lie Type, Wiley, London, 1972 | MR | Zbl

[13] Dzh. Khamfri, Lineinye algebraicheskie gruppy, Nauka, Moskva, 1980 | MR

[14] R. W. Carter, “Centralizers of semisimple elements in finite groups of Lie type”, Proc. Lond. Math. Soc.(3), 37:3 (1978), 491–507 | DOI | MR | Zbl

[15] R. W. Carter, “Conjugacy classes in the Weyl group”, Compositio math., 25:1 (1972), 1–59 | MR | Zbl

[16] J. E. Humphreys, Conjugacy Classes in semisimple algebraic groups, Math. Surv. Monogr., 43, Am. Math. Soc., Providence, RI, 1995 | MR | Zbl

[17] D. Deriziotis, Conjugacy classes and centralizers of semisimple elements in finite groups of Lie type, Vorlesungen aus dem Fachbereich Mathetmatik der Universitat Essen, 11, 1984 | MR | Zbl

[18] R. W. Carter, “Centralizers of semisimple elements in the finite classical groups”, Proc. Lond. Math. Soc.(3), 42:1 (1981), 1–41 | DOI | MR | Zbl

[19] D. Deriziotis, “The centralizers of semisimple elements of the Chevalley groups $E_7$ and $E_8$”, Tokyo J. Math., 6:1 (1983), 191–216 | MR | Zbl

[20] M. Suzuki, “On a class of doubly transitive groups”, Ann. Math., 75:1 (1962), 105–145 | DOI | MR | Zbl

[21] H. N. Ward, “On Ree's series of simple groups”, Trans. Arn. Math. Soc., 121:1 (1966), 62–80 | DOI | MR

[22] A. V. Borovik, “Stroenie konechnykh podgrupp prostykh algebraicheskikh grupp”, Algebra i logika, 28:3 (1989), 249–279 | MR | Zbl

[23] V. D. Mazurov, D. O. Revin, “O khollovom $D_\pi$-svoistve dlya konechnykh grupp”, Sib. matem. zh., 38:1 (1997), 125–134 | MR | Zbl

[24] R. Steinberg, Lektsii o gruppakh Shevalle, Mir, Moskva, 1975 | MR | Zbl

[25] A. V. Borovik, “Zhordanovy podgruppy prostykh algebraicheskikh grupp”, Algebra i logika, 28:2 (1989), 144–159 | MR | Zbl

[26] D. Gorenstein, R. Lyons, “The local structure of finite groups of characteristic $2$ type”, Mem. Am. Math. Soc., 42:276 (1983) | MR