Hall subgroups of odd order in finite groups
Algebra i logika, Tome 41 (2002) no. 1, pp. 15-56

Voir la notice de l'article provenant de la source Math-Net.Ru

We complete the description of Hall subgroups of odd order in finite simple groups initiated by F.Gross, and as a consequence, bring to a close the study of odd order Hall subgroups in all finite groups modulo classification of finite simple groups. In addition, it is proved that for every set $\pi$ of primes, an extension of an arbitrary $D_\pi$-group by a $D_\pi$-group is again a $D_\pi$-group. This result gives a partial answer to Question 3.62 posed by L. A. Shemetkov in the “Kourovka Notebook”.
Keywords: finite simple group, Hall subgroup, exceptional groups of Lie type.
@article{AL_2002_41_1_a1,
     author = {E. P. Vdovin and D. O. Revin},
     title = {Hall subgroups of odd order in finite groups},
     journal = {Algebra i logika},
     pages = {15--56},
     publisher = {mathdoc},
     volume = {41},
     number = {1},
     year = {2002},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/AL_2002_41_1_a1/}
}
TY  - JOUR
AU  - E. P. Vdovin
AU  - D. O. Revin
TI  - Hall subgroups of odd order in finite groups
JO  - Algebra i logika
PY  - 2002
SP  - 15
EP  - 56
VL  - 41
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AL_2002_41_1_a1/
LA  - ru
ID  - AL_2002_41_1_a1
ER  - 
%0 Journal Article
%A E. P. Vdovin
%A D. O. Revin
%T Hall subgroups of odd order in finite groups
%J Algebra i logika
%D 2002
%P 15-56
%V 41
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AL_2002_41_1_a1/
%G ru
%F AL_2002_41_1_a1
E. P. Vdovin; D. O. Revin. Hall subgroups of odd order in finite groups. Algebra i logika, Tome 41 (2002) no. 1, pp. 15-56. http://geodesic.mathdoc.fr/item/AL_2002_41_1_a1/