Voir la notice de l'article provenant de la source Math-Net.Ru
@article{AL_2002_41_1_a1, author = {E. P. Vdovin and D. O. Revin}, title = {Hall subgroups of odd order in finite groups}, journal = {Algebra i logika}, pages = {15--56}, publisher = {mathdoc}, volume = {41}, number = {1}, year = {2002}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/AL_2002_41_1_a1/} }
E. P. Vdovin; D. O. Revin. Hall subgroups of odd order in finite groups. Algebra i logika, Tome 41 (2002) no. 1, pp. 15-56. http://geodesic.mathdoc.fr/item/AL_2002_41_1_a1/
[1] A. S. Kondratev, “Podgruppy konechnykh grupp Shevalle”, Uspekhi matem. nauk, 41:1(247) (1986), 57–96 | MR
[2] Nereshennye voprosy teorii grupp. Kourovskaya tetrad, 14-e izd., In-t matem. SO RAN, Novosibirsk, 1999 | MR
[3] P. Hall, “Theorems like Sylow's”, Proc. Lond. Math. Soc.(3), 6:22 (1956), 286–304 | DOI | MR | Zbl
[4] J. G. Thompson, “Hall subgroups of the symmetric groups”, J. Comb. Theory(A), 1966, no. 1, 271–279 | DOI | MR | Zbl
[5] F. Gross, “On a conjecture of Philip Hail”, Proc. Lond. Math. Soc.(3), 52:3 (1986), 464–494 | DOI | MR | Zbl
[6] F. Gross, “Hall subgroups of order not divisible by 3”, Rocky Mountain J. Math., 23:2 (1993), 569–591 | DOI | MR | Zbl
[7] D. O. Revin, “Khollovy $\pi$-podgruppy konechnykh grupp Shevalle, kharakteristika kotorykh prinadlezhit $\pi$”, Matem. trudy, 2:1 (1999), 160–208 | MR | Zbl
[8] D. O. Revin, Dve $D_\pi$-teoremy dlya odnogo klassa konechnykh grupp, preprint No 40 NIIDM, Novosibirsk, 1999
[9] F. Gross, “Odd order Hall subgroups of the classical linear groups”, Math. Z., 220:3 (1995), 317–336 | DOI | MR | Zbl
[10] F. Gross, “Conjugacy of odd order Hall subgroups”, Bull. Lond. Math. Soc., 19:4 (1987), 311–319 | DOI | MR | Zbl
[11] M. I. Kargapolov, Yu. Ya. Merzlyakov, Osnovy teorii grupp, Nauka, Moskva, 1996 | MR | Zbl
[12] R. W. Carter, Simple Groups of Lie Type, Wiley, London, 1972 | MR | Zbl
[13] Dzh. Khamfri, Lineinye algebraicheskie gruppy, Nauka, Moskva, 1980 | MR
[14] R. W. Carter, “Centralizers of semisimple elements in finite groups of Lie type”, Proc. Lond. Math. Soc.(3), 37:3 (1978), 491–507 | DOI | MR | Zbl
[15] R. W. Carter, “Conjugacy classes in the Weyl group”, Compositio math., 25:1 (1972), 1–59 | MR | Zbl
[16] J. E. Humphreys, Conjugacy Classes in semisimple algebraic groups, Math. Surv. Monogr., 43, Am. Math. Soc., Providence, RI, 1995 | MR | Zbl
[17] D. Deriziotis, Conjugacy classes and centralizers of semisimple elements in finite groups of Lie type, Vorlesungen aus dem Fachbereich Mathetmatik der Universitat Essen, 11, 1984 | MR | Zbl
[18] R. W. Carter, “Centralizers of semisimple elements in the finite classical groups”, Proc. Lond. Math. Soc.(3), 42:1 (1981), 1–41 | DOI | MR | Zbl
[19] D. Deriziotis, “The centralizers of semisimple elements of the Chevalley groups $E_7$ and $E_8$”, Tokyo J. Math., 6:1 (1983), 191–216 | MR | Zbl
[20] M. Suzuki, “On a class of doubly transitive groups”, Ann. Math., 75:1 (1962), 105–145 | DOI | MR | Zbl
[21] H. N. Ward, “On Ree's series of simple groups”, Trans. Arn. Math. Soc., 121:1 (1966), 62–80 | DOI | MR
[22] A. V. Borovik, “Stroenie konechnykh podgrupp prostykh algebraicheskikh grupp”, Algebra i logika, 28:3 (1989), 249–279 | MR | Zbl
[23] V. D. Mazurov, D. O. Revin, “O khollovom $D_\pi$-svoistve dlya konechnykh grupp”, Sib. matem. zh., 38:1 (1997), 125–134 | MR | Zbl
[24] R. Steinberg, Lektsii o gruppakh Shevalle, Mir, Moskva, 1975 | MR | Zbl
[25] A. V. Borovik, “Zhordanovy podgruppy prostykh algebraicheskikh grupp”, Algebra i logika, 28:2 (1989), 144–159 | MR | Zbl
[26] D. Gorenstein, R. Lyons, “The local structure of finite groups of characteristic $2$ type”, Mem. Am. Math. Soc., 42:276 (1983) | MR