Invariant Lie Algebras and Lie Algebras with a~Small Centroid
Algebra i logika, Tome 40 (2001) no. 6, pp. 651-674.

Voir la notice de l'article provenant de la source Math-Net.Ru

A subalgebra of a Lie algebra is said to be invariant if it is invariant under the action of some Cartan subalgebra of that algebra. A known theorem of Melville says that a nilpotent invariant subalgebra of a finite-dimensional semisimple complex Lie algebra has a small centroid. The notion of a Lie algebra with small centroid extends to a class of all finite-dimensional algebras. For finite-dimensional algebras of zero characteristic with semisimple derivations in a sufficiently broad class, their centroid is proved small. As a consequence, it turns out that every invariant subalgebra of a finite-dimensional reductive Lie algebra over an arbitrary definition field of zero characteristic has a small centroid.
Keywords: Lie algebra, finite-dimensional Lie algebra, reductive Lie algebra, nilpotent algebra
Mots-clés : invariant subalgebra, Cartan subalgebra, centroid.
@article{AL_2001_40_6_a1,
     author = {K. N. Ponomarev},
     title = {Invariant {Lie} {Algebras} and {Lie} {Algebras} with {a~Small} {Centroid}},
     journal = {Algebra i logika},
     pages = {651--674},
     publisher = {mathdoc},
     volume = {40},
     number = {6},
     year = {2001},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/AL_2001_40_6_a1/}
}
TY  - JOUR
AU  - K. N. Ponomarev
TI  - Invariant Lie Algebras and Lie Algebras with a~Small Centroid
JO  - Algebra i logika
PY  - 2001
SP  - 651
EP  - 674
VL  - 40
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AL_2001_40_6_a1/
LA  - ru
ID  - AL_2001_40_6_a1
ER  - 
%0 Journal Article
%A K. N. Ponomarev
%T Invariant Lie Algebras and Lie Algebras with a~Small Centroid
%J Algebra i logika
%D 2001
%P 651-674
%V 40
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AL_2001_40_6_a1/
%G ru
%F AL_2001_40_6_a1
K. N. Ponomarev. Invariant Lie Algebras and Lie Algebras with a~Small Centroid. Algebra i logika, Tome 40 (2001) no. 6, pp. 651-674. http://geodesic.mathdoc.fr/item/AL_2001_40_6_a1/