Quasiresolvent Models and $B$-Models
Algebra i logika, Tome 40 (2001) no. 4, pp. 484-499.

Voir la notice de l'article provenant de la source Math-Net.Ru

Relations among classes of resolvent, quasiresolvent, intrinsically enumerable models, and $B$-models are established. It is proved that every linear order containing a $\Delta$-subset isomorphic to $\omega$ or to $\omega^-$ is not quasiresolvent. It is stated that every model of a countably categorical theory is a $B$-model. And it is shown that for every $B$-model in a hereditarily finite admissible set, the uniformization theorem fails.
Keywords: resolvent model, quasiresolvent model, intrinsically enumerable model, $B$-model, countably categorical theory, hereditarily finite admissible set, the uniformization theorem.
@article{AL_2001_40_4_a6,
     author = {A. N. Khisamiev},
     title = {Quasiresolvent {Models} and $B${-Models}},
     journal = {Algebra i logika},
     pages = {484--499},
     publisher = {mathdoc},
     volume = {40},
     number = {4},
     year = {2001},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/AL_2001_40_4_a6/}
}
TY  - JOUR
AU  - A. N. Khisamiev
TI  - Quasiresolvent Models and $B$-Models
JO  - Algebra i logika
PY  - 2001
SP  - 484
EP  - 499
VL  - 40
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AL_2001_40_4_a6/
LA  - ru
ID  - AL_2001_40_4_a6
ER  - 
%0 Journal Article
%A A. N. Khisamiev
%T Quasiresolvent Models and $B$-Models
%J Algebra i logika
%D 2001
%P 484-499
%V 40
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AL_2001_40_4_a6/
%G ru
%F AL_2001_40_4_a6
A. N. Khisamiev. Quasiresolvent Models and $B$-Models. Algebra i logika, Tome 40 (2001) no. 4, pp. 484-499. http://geodesic.mathdoc.fr/item/AL_2001_40_4_a6/