Lattice Fully Orderable Groups
Algebra i logika, Tome 40 (2001) no. 4, pp. 415-429.

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $\Omega$ be a linearly ordered set, $A(\Omega)$ be the group of all order automorphisms of $\Omega$, and $L(\Omega)$ be a normal subgroup of $A(\Omega)$ consisting of all automorphisms whose support is bounded above. We argue to show that, for every linearly ordered set $\Omega$ such that: (1) $A(\Omega)$ is an $o$-2-transitive group, and (2) $\Omega$ contains a countable unbounded sequence of elements, the simple group $A(\Omega)/L(\Omega)$ has exactly two maximal and two minimal non-trivial (mutually inverse) partial orders, and that every partial order of $A(\Omega)/L(\Omega)$ extends to a lattice one. It is proved that every lattice-orderable group is isomorphically embeddable in a simple lattice fully orderable group. We also state that some quotient groups of Dlab groups of the real line and unit interval are lattice fully orderable.
Keywords: lattice-orderable group, lattice-orderable group, Dlab group of the real line.
@article{AL_2001_40_4_a3,
     author = {N. Ya. Medvedev},
     title = {Lattice {Fully} {Orderable} {Groups}},
     journal = {Algebra i logika},
     pages = {415--429},
     publisher = {mathdoc},
     volume = {40},
     number = {4},
     year = {2001},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/AL_2001_40_4_a3/}
}
TY  - JOUR
AU  - N. Ya. Medvedev
TI  - Lattice Fully Orderable Groups
JO  - Algebra i logika
PY  - 2001
SP  - 415
EP  - 429
VL  - 40
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AL_2001_40_4_a3/
LA  - ru
ID  - AL_2001_40_4_a3
ER  - 
%0 Journal Article
%A N. Ya. Medvedev
%T Lattice Fully Orderable Groups
%J Algebra i logika
%D 2001
%P 415-429
%V 40
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AL_2001_40_4_a3/
%G ru
%F AL_2001_40_4_a3
N. Ya. Medvedev. Lattice Fully Orderable Groups. Algebra i logika, Tome 40 (2001) no. 4, pp. 415-429. http://geodesic.mathdoc.fr/item/AL_2001_40_4_a3/