Different Definitions of Algebraically Closed Skew Fields
Algebra i logika, Tome 40 (2001) no. 4, pp. 396-414.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider an algebraically closed (in the sense of solvability of arbitrary polynomial equations) skew field constructed by Makar – Limanov. It is shown that every generalized polynomial equation with more than one homogeneous component has a non-zero solution. We also look into P. Cohn's approach to defining algebraically closed non-commutative skew fields and treat some related problems.
Keywords: algebraically closed skew field
Mots-clés : polynomial equation.
@article{AL_2001_40_4_a2,
     author = {P. S. Kolesnikov},
     title = {Different {Definitions} of {Algebraically} {Closed} {Skew} {Fields}},
     journal = {Algebra i logika},
     pages = {396--414},
     publisher = {mathdoc},
     volume = {40},
     number = {4},
     year = {2001},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/AL_2001_40_4_a2/}
}
TY  - JOUR
AU  - P. S. Kolesnikov
TI  - Different Definitions of Algebraically Closed Skew Fields
JO  - Algebra i logika
PY  - 2001
SP  - 396
EP  - 414
VL  - 40
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AL_2001_40_4_a2/
LA  - ru
ID  - AL_2001_40_4_a2
ER  - 
%0 Journal Article
%A P. S. Kolesnikov
%T Different Definitions of Algebraically Closed Skew Fields
%J Algebra i logika
%D 2001
%P 396-414
%V 40
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AL_2001_40_4_a2/
%G ru
%F AL_2001_40_4_a2
P. S. Kolesnikov. Different Definitions of Algebraically Closed Skew Fields. Algebra i logika, Tome 40 (2001) no. 4, pp. 396-414. http://geodesic.mathdoc.fr/item/AL_2001_40_4_a2/