The Embedding Theorem for Cantor Varieties
Algebra i logika, Tome 40 (2001) no. 3, pp. 352-369.

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $m$ and $n$ be fixed integers, with $1\leqslant m$. A Cantor variety $C_{m,n}$ is a variety of algebras with $m$ $n$-ary and $n$ $m$-ary basic operations which is defined in a signature $\Omega=\{g_1,\dots,g_m,f_1,\dots,f_n\}$ by the identities \begin{gather*} f_i(g_1(x_1,\dots,x_n),\dots,g_m(x_1,\dots,x_n))=x_i, \qquad i=1,\dots,n, \\ g_j(f_1(x_1,\dots,x_m),\dots,f_n(x_1,\dots,x_m))=x_j, \qquad j=1,\dots,m. \end{gather*} We prove the following: (a) every partial $C_{m,n}$-algebra $A$ is isomorphically embeddable in the algebra $G=\langle A; S(A)\rangle$ of $C_{m,n}$; (b) for every finitely presented algebra $G=\langle A; S\rangle$ in $C_{m,n}$, the word problem is decidable; (c) for finitely presented algebras in $C_{m,n}$, the occurrence problem is decidable; (d) $C_{m,n}$ has a hereditarily undecidable elementary theory.
Keywords: Cantor variety, the word problem, the occurrence problem, elementary theory.
@article{AL_2001_40_3_a7,
     author = {L. V. Shabunin},
     title = {The {Embedding} {Theorem} for {Cantor} {Varieties}},
     journal = {Algebra i logika},
     pages = {352--369},
     publisher = {mathdoc},
     volume = {40},
     number = {3},
     year = {2001},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/AL_2001_40_3_a7/}
}
TY  - JOUR
AU  - L. V. Shabunin
TI  - The Embedding Theorem for Cantor Varieties
JO  - Algebra i logika
PY  - 2001
SP  - 352
EP  - 369
VL  - 40
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AL_2001_40_3_a7/
LA  - ru
ID  - AL_2001_40_3_a7
ER  - 
%0 Journal Article
%A L. V. Shabunin
%T The Embedding Theorem for Cantor Varieties
%J Algebra i logika
%D 2001
%P 352-369
%V 40
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AL_2001_40_3_a7/
%G ru
%F AL_2001_40_3_a7
L. V. Shabunin. The Embedding Theorem for Cantor Varieties. Algebra i logika, Tome 40 (2001) no. 3, pp. 352-369. http://geodesic.mathdoc.fr/item/AL_2001_40_3_a7/