Finiteness of Some Sharply Doubly Transitive Groups
Algebra i logika, Tome 40 (2001) no. 3, pp. 344-351.

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $G$ be a doubly transitive permutation group such that its point stabilizer is a 2-group and its two-point stabilizer is trivial. It is proved that $G$ is finite and isomorphic to a Frobenius group of order $3^2\cdot 2^3$ or $p\cdot 2^n$, where $p=2^n+1$ is a Fermat prime.
Keywords: doubly transitive permutation group, stabilizer
Mots-clés : Frobenius group.
@article{AL_2001_40_3_a6,
     author = {N. M. Suchkov},
     title = {Finiteness of {Some} {Sharply} {Doubly} {Transitive} {Groups}},
     journal = {Algebra i logika},
     pages = {344--351},
     publisher = {mathdoc},
     volume = {40},
     number = {3},
     year = {2001},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/AL_2001_40_3_a6/}
}
TY  - JOUR
AU  - N. M. Suchkov
TI  - Finiteness of Some Sharply Doubly Transitive Groups
JO  - Algebra i logika
PY  - 2001
SP  - 344
EP  - 351
VL  - 40
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AL_2001_40_3_a6/
LA  - ru
ID  - AL_2001_40_3_a6
ER  - 
%0 Journal Article
%A N. M. Suchkov
%T Finiteness of Some Sharply Doubly Transitive Groups
%J Algebra i logika
%D 2001
%P 344-351
%V 40
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AL_2001_40_3_a6/
%G ru
%F AL_2001_40_3_a6
N. M. Suchkov. Finiteness of Some Sharply Doubly Transitive Groups. Algebra i logika, Tome 40 (2001) no. 3, pp. 344-351. http://geodesic.mathdoc.fr/item/AL_2001_40_3_a6/