$p$-Groups with Chernikov Centralizers of Non-Identity Elements of Prime Order
Algebra i logika, Tome 40 (2001) no. 3, pp. 330-343.

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $G$ be a $p$-group, $a$ its element of prime order $p$, and $C_G(a)$ a Chernikov group. We prove that either $G$ is a Chernikov group, or $G$ possesses a non-locally finite section w. r. t. a Chernikov subgroup in which a maximal locally finite subgroup containing an image of $a$ is unique. Moreover, it is shown that the set of groups which satisfy the first part of the alternative is countable, while the set of groups which comply with the second is of the power of the continuum for every odd $p$.
Mots-clés : $p$-group, Chernikov group
Keywords: non-locally finite section, locally finite subgroup.
@article{AL_2001_40_3_a5,
     author = {A. M. Popov},
     title = {$p${-Groups} with {Chernikov} {Centralizers} of {Non-Identity} {Elements} of {Prime} {Order}},
     journal = {Algebra i logika},
     pages = {330--343},
     publisher = {mathdoc},
     volume = {40},
     number = {3},
     year = {2001},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/AL_2001_40_3_a5/}
}
TY  - JOUR
AU  - A. M. Popov
TI  - $p$-Groups with Chernikov Centralizers of Non-Identity Elements of Prime Order
JO  - Algebra i logika
PY  - 2001
SP  - 330
EP  - 343
VL  - 40
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AL_2001_40_3_a5/
LA  - ru
ID  - AL_2001_40_3_a5
ER  - 
%0 Journal Article
%A A. M. Popov
%T $p$-Groups with Chernikov Centralizers of Non-Identity Elements of Prime Order
%J Algebra i logika
%D 2001
%P 330-343
%V 40
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AL_2001_40_3_a5/
%G ru
%F AL_2001_40_3_a5
A. M. Popov. $p$-Groups with Chernikov Centralizers of Non-Identity Elements of Prime Order. Algebra i logika, Tome 40 (2001) no. 3, pp. 330-343. http://geodesic.mathdoc.fr/item/AL_2001_40_3_a5/