Immediate Extensions of Pr\"ufer Rings
Algebra i logika, Tome 40 (2001) no. 3, pp. 262-289.

Voir la notice de l'article provenant de la source Math-Net.Ru

We study into questions that naturally arise when Prüfer rings are viewed from the geometry standpoint. A ring of principal ideals which has infinitely many prime ideals and is such that its field of fractions is non-Hilbertian is constructed. This answers in the negative a question of Lang.
Keywords: Prüfer ring, ring of principal ideal, field of fractions.
@article{AL_2001_40_3_a1,
     author = {Yu. L. Ershov},
     title = {Immediate {Extensions} of {Pr\"ufer} {Rings}},
     journal = {Algebra i logika},
     pages = {262--289},
     publisher = {mathdoc},
     volume = {40},
     number = {3},
     year = {2001},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/AL_2001_40_3_a1/}
}
TY  - JOUR
AU  - Yu. L. Ershov
TI  - Immediate Extensions of Pr\"ufer Rings
JO  - Algebra i logika
PY  - 2001
SP  - 262
EP  - 289
VL  - 40
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AL_2001_40_3_a1/
LA  - ru
ID  - AL_2001_40_3_a1
ER  - 
%0 Journal Article
%A Yu. L. Ershov
%T Immediate Extensions of Pr\"ufer Rings
%J Algebra i logika
%D 2001
%P 262-289
%V 40
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AL_2001_40_3_a1/
%G ru
%F AL_2001_40_3_a1
Yu. L. Ershov. Immediate Extensions of Pr\"ufer Rings. Algebra i logika, Tome 40 (2001) no. 3, pp. 262-289. http://geodesic.mathdoc.fr/item/AL_2001_40_3_a1/