Equational Theories for Classes of Finite Semigroups
Algebra i logika, Tome 40 (2001) no. 1, pp. 97-116
Voir la notice de l'article provenant de la source Math-Net.Ru
It is proved that there exists an infinite sequence of finitely based semigroup varieties $\mathfrak A_1\subset\mathfrak B_1\subset\mathfrak A_2\subset\mathfrak B_2\subset\dotsb$ such that, for all $i$, an equational theory for $\mathfrak A_i$ and for the class $\mathfrak A_i\cap\mathfrak F$ of all finite semigroups in $\mathfrak A_i$ is undecidable while an equational theory for $\mathfrak B_i$ and for the class $\mathfrak B_i\cap\mathfrak F$ of all finite semigroups in $\mathfrak B_i$ is decidable. An infinite sequence of finitely based semigroup varieties $\mathfrak A_1\supset\mathfrak B_1\supset\mathfrak A_2\supset\mathfrak B_2\supset\dotsb$ is constructed so that, for all $i$, an equational theory for $\mathfrak B_i$ and for the class $\mathfrak B_i\cap\mathfrak F$ of all finite semigroups in $\mathfrak B_i$ is decidable whicle an equational theory for $\mathfrak A_i$ and for the class $\mathfrak A_i\cap\mathfrak F$ of all finite semigroups in $\mathfrak A_i$ is not.
@article{AL_2001_40_1_a5,
author = {V. Yu. Popov},
title = {Equational {Theories} for {Classes} of {Finite} {Semigroups}},
journal = {Algebra i logika},
pages = {97--116},
publisher = {mathdoc},
volume = {40},
number = {1},
year = {2001},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/AL_2001_40_1_a5/}
}
V. Yu. Popov. Equational Theories for Classes of Finite Semigroups. Algebra i logika, Tome 40 (2001) no. 1, pp. 97-116. http://geodesic.mathdoc.fr/item/AL_2001_40_1_a5/