Finite 2-Groups with Automorphisms of Order~4
Algebra i logika, Tome 40 (2001) no. 1, pp. 83-96.

Voir la notice de l'article provenant de la source Math-Net.Ru

It is proved that if a locally finite or locally nilpotent 2-group $G$ admits an automorphism $\varphi$ of order 4 with finitely many fixed points $m$ then $G$ possesses a normal subgroup $H$ of $m$-bounded index such that the second derived subgroup of $H$ is contained in its center.
Keywords: locally finite $2$-group, locally nilpotent $2$-group, automorphism of order 4 with finitely many fixed points, normal subgroup, derived subgroup, center.
@article{AL_2001_40_1_a4,
     author = {N. Yu. Makarenko},
     title = {Finite {2-Groups} with {Automorphisms} of {Order~4}},
     journal = {Algebra i logika},
     pages = {83--96},
     publisher = {mathdoc},
     volume = {40},
     number = {1},
     year = {2001},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/AL_2001_40_1_a4/}
}
TY  - JOUR
AU  - N. Yu. Makarenko
TI  - Finite 2-Groups with Automorphisms of Order~4
JO  - Algebra i logika
PY  - 2001
SP  - 83
EP  - 96
VL  - 40
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AL_2001_40_1_a4/
LA  - ru
ID  - AL_2001_40_1_a4
ER  - 
%0 Journal Article
%A N. Yu. Makarenko
%T Finite 2-Groups with Automorphisms of Order~4
%J Algebra i logika
%D 2001
%P 83-96
%V 40
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AL_2001_40_1_a4/
%G ru
%F AL_2001_40_1_a4
N. Yu. Makarenko. Finite 2-Groups with Automorphisms of Order~4. Algebra i logika, Tome 40 (2001) no. 1, pp. 83-96. http://geodesic.mathdoc.fr/item/AL_2001_40_1_a4/