$G$-Identities of Nilpotent Groups.~I
Algebra i logika, Tome 40 (2001) no. 1, pp. 3-21.

Voir la notice de l'article provenant de la source Math-Net.Ru

The structure of a group $V_{n,red}(G)$ of reduced $G$-identities of rank $n$ is treated subject to the condition that $G$ is a nilpotent group of class 1 or 2. The results obtained allow us to settle the question of whether a $G$-variety $G$-$\operatorname{var}(G)$ generated by a nilpotent group $G$ of class 2 is finitely based. Moreover, we introduce the concepts of a $d$-commutator subgroup and of a main $d$-group, associated with $G$.
Keywords: a group of reduced $G$-identities, nilpotent group of class 2, $G$-variety, finitely based $G$-variety.
@article{AL_2001_40_1_a0,
     author = {M. G. Amaglobeli},
     title = {$G${-Identities} of {Nilpotent} {Groups.~I}},
     journal = {Algebra i logika},
     pages = {3--21},
     publisher = {mathdoc},
     volume = {40},
     number = {1},
     year = {2001},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/AL_2001_40_1_a0/}
}
TY  - JOUR
AU  - M. G. Amaglobeli
TI  - $G$-Identities of Nilpotent Groups.~I
JO  - Algebra i logika
PY  - 2001
SP  - 3
EP  - 21
VL  - 40
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AL_2001_40_1_a0/
LA  - ru
ID  - AL_2001_40_1_a0
ER  - 
%0 Journal Article
%A M. G. Amaglobeli
%T $G$-Identities of Nilpotent Groups.~I
%J Algebra i logika
%D 2001
%P 3-21
%V 40
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AL_2001_40_1_a0/
%G ru
%F AL_2001_40_1_a0
M. G. Amaglobeli. $G$-Identities of Nilpotent Groups.~I. Algebra i logika, Tome 40 (2001) no. 1, pp. 3-21. http://geodesic.mathdoc.fr/item/AL_2001_40_1_a0/