DescrIbing a~basis in semireduced form for inference rules of intuitionistic logic
Algebra i logika, Tome 39 (2000) no. 6, pp. 720-740.

Voir la notice de l'article provenant de la source Math-Net.Ru

It is shown that a set of all rules in semireduced form whose premises satisfy a collection of specific conditions form a basis for all rules admissible in IPC. The conditions specified are quite natural, and many of them show up as properties of maximal theories in the canonical Kripke model for IPC. Besides, a similar basis is constructed for rules admissible in the superintuitionistic logic KC, a logic of the weak law of the excluded middle.
@article{AL_2000_39_6_a5,
     author = {V. V. Rybakov and M. Terziler and V. V. Rimatskii},
     title = {DescrIbing a~basis in semireduced form for inference rules of intuitionistic logic},
     journal = {Algebra i logika},
     pages = {720--740},
     publisher = {mathdoc},
     volume = {39},
     number = {6},
     year = {2000},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/AL_2000_39_6_a5/}
}
TY  - JOUR
AU  - V. V. Rybakov
AU  - M. Terziler
AU  - V. V. Rimatskii
TI  - DescrIbing a~basis in semireduced form for inference rules of intuitionistic logic
JO  - Algebra i logika
PY  - 2000
SP  - 720
EP  - 740
VL  - 39
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AL_2000_39_6_a5/
LA  - ru
ID  - AL_2000_39_6_a5
ER  - 
%0 Journal Article
%A V. V. Rybakov
%A M. Terziler
%A V. V. Rimatskii
%T DescrIbing a~basis in semireduced form for inference rules of intuitionistic logic
%J Algebra i logika
%D 2000
%P 720-740
%V 39
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AL_2000_39_6_a5/
%G ru
%F AL_2000_39_6_a5
V. V. Rybakov; M. Terziler; V. V. Rimatskii. DescrIbing a~basis in semireduced form for inference rules of intuitionistic logic. Algebra i logika, Tome 39 (2000) no. 6, pp. 720-740. http://geodesic.mathdoc.fr/item/AL_2000_39_6_a5/