The Makar-Limanov algebraically closed skew field
Algebra i logika, Tome 39 (2000) no. 6, pp. 662-692.

Voir la notice de l'article provenant de la source Math-Net.Ru

We re-prove the Makar-Limanov theorem on the existence of an algebraically closed skew field in the sense of there being a solution for any (generalized) polynomial equation. A new example of such a skew field is presented in which the Makar-Limanov construction is contained as a skew subfield. Our reasoning is underpinned by the main ideas of the original proof, but we employ a simpler argument for proving that the skew field constructed is algebraically closed.
@article{AL_2000_39_6_a2,
     author = {P. S. Kolesnikov},
     title = {The {Makar-Limanov} algebraically closed skew field},
     journal = {Algebra i logika},
     pages = {662--692},
     publisher = {mathdoc},
     volume = {39},
     number = {6},
     year = {2000},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/AL_2000_39_6_a2/}
}
TY  - JOUR
AU  - P. S. Kolesnikov
TI  - The Makar-Limanov algebraically closed skew field
JO  - Algebra i logika
PY  - 2000
SP  - 662
EP  - 692
VL  - 39
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AL_2000_39_6_a2/
LA  - ru
ID  - AL_2000_39_6_a2
ER  - 
%0 Journal Article
%A P. S. Kolesnikov
%T The Makar-Limanov algebraically closed skew field
%J Algebra i logika
%D 2000
%P 662-692
%V 39
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AL_2000_39_6_a2/
%G ru
%F AL_2000_39_6_a2
P. S. Kolesnikov. The Makar-Limanov algebraically closed skew field. Algebra i logika, Tome 39 (2000) no. 6, pp. 662-692. http://geodesic.mathdoc.fr/item/AL_2000_39_6_a2/